%\TDTALVl EW

USER’S GUIDE

VERSION 4.1
JuNE 2000

Copyright © 1999-2000 by Etnus LLC. All rights reserved

Copyright © 1998-1999 by Etnus Inc. All rights reserved.

Copyright © 1996—1998 by Dolphin Interconnect Solutions, Inc.

Copyright © 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise
without the prior written permission of Etnus LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licens-
ees. The information in this manual is subject to change without notice, and should not be
construed as a commitment by Etnus. Etnus assumes no responsibility for any errors that
appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC. TimeScan and Gist are trade-
marks of Etnus LLC.

All other brand names are the trademarks of their respective holders.

Version 4.1

Contents

About This Book

Supported Platformscoooio XV
Reporting ProblemSooviiiiiii e xvi
CONVENTIONS ..ot XVi

TotalView Features

TotalView AdVaNTAZEScooviiiiiiei e 1
TotalView WINAOWScc.oooiiiiiiio e 3
MUltiproCess PrOGIaMSccoivuiiieiiiii e 4
Multithreaded Programscccoooiiiiiiiii e 5
Controlling Processes and Threadsc..ccoooeviiiiiiiiiiii 6
Using ACtion POINESooooiiiiiiioee e, 7
Examining and Manipulating Datacccccooeiiiiiiiiiiiie e, 8
Visualizing Array Datac...ooooiviiiiiie e 9
Distributed Debuggingcoooviiiiiiie e 9
Context-Sensitive HElPoooiiiiiiiiicce e 10

TotalView Basics

Compiling ProGramscc..ccooooiiiiiiiie e 11
Starting TOtalVIEWcccooiiiii e 12
Using the Mouse BULLONSccoooiiiiiiiiiicceee e 13
Using Menu and Keyboard Commandsccccooeeioiiiiiicein 14
GettiNG HEIP oo 15
Using the Primary WiINdOWScoooiiiiiiiiiicii e 15

Starting @ PrOCESSoiiiiiiiii 15
Sizing Process WINdow Panescc.ccooiiioiiiiiiii e 19

Navigating in the Process Windowc..oooioviiiiiii 19

Navigating in the Root WINdOWcc...coooiiiiiiiiiie 20
Scrolling Windows and Fieldsccoooiiiiii 20

TotalView User's Guide

Scrolling WINAOWSovvviiiiii e 20

Scrolling Multiline Fieldsccocociiiii 22
Diving into ODJECES .ooiiiiiiiiie e 23
EQItiNG TEXE .ooiiiiiiieee e, 24
Searching for TEXt ..., 26
Using the Spelling Correctoroooviiiiiiiieceee e 26
Saving the Contents of Windowscccoooiiiiiiiiiii 27
Exiting from TotalVIEWccoooiiiiii e 28

3 Setting Up a Debugging Session

Compiling PrOGIramscc..oooiiiiiiiiii e 29
Starting the TotalView Debuggercccoooiiiiiiiiiiiiiee 30
Loading EXecutablesc...cooiiiiiiiiiie e 32
Loading a New Executable ... 32
Reloading a Recompiled Executableccooccoiii 33
Attaching tO PrOCESSEScoovviiiiiiiii e, 33
Attaching Using Show All Unattached Processes 34
Attaching Using the New Program Windowcccc.ooii.o, 35
Detaching from PrOCESSEScccoviiiiiiiiiiicieeeie e, 36
Examining a Core File ..., 36
Determining the Status of Processes and Threads 37
PrOCESS STATUS .. .vvviiiiiiieee it 37
Thread STatUSocvviiieiieieee e 38
Unattached Process Statescccoevievieiiioiioiceeeee e 39
Attached Process Statescccoocvioviiiiiiiiiiieeceeee e 40
Handling Signalsoooiiiiiiiie e, 41
Setting Search Paths ..ot 44
Setting Command ArgUMENTScccveiiiiiiiieiiiie e 46
Setting Environment Variablesccccccccoiiiiiii 46
Setting Input and Output Files ... 48
Monitoring TotalVIew SESSIONScccevivuviiiieieeiieeeeee e 48

4 Setting Up Remote Debugging Sessions

Debugging REMOte PrOCESSES.c..viiiiiiiiieeeeeeeee e 51
Loading a Remote Executable ... 51
Attaching to @ Remote ProCESSccc.ooovviiiiiiiiiiiiicee, 52

Connecting to Remote Machinescccccccoviiiiiiiiiiii 53

Starting the Debugger Server for Remote Debugging 55
Single Process Server Launch Optionsccccooeeiiiiiiiiinnenn .. 55
Bulk Launch Window Optionsccooooviieiiiiiiieeicieeceeee 56

iv TotalView User’s Guide Version 4.1

Version 4.1

Contents

Starting the Debugger Server Manuallyc.c..cccooiiiin . 58
Single Process Server Launch Commandc...ccooeie . 59
Bulk Server Launch on an SGI MIPs Machinecc.......... 61
Bulk Server Launch on an IBM RS/6000 AIX Machine 62
Disabling Auto-Launchcccccooiiiii 63
Changing the Remote Shell Commandccccoceviiiiieiin . 63
Changing the Argumentsccccccooviiiiiiiiiie e 64
Auto-launch SEqUENCE ... 64
Debugging Over a Serial Line ... 65
Start the TotalView Debugger Servercoccoeviiiiiiiiiiie 66
Starting TotalView on a Serial Linec..cooocooiiiiii 67
New Program WINAOWccociiiiiiiiiiiiiiiiie e, 67
Setting Up Parallel Debugging Sessions
Debugging MPI ApplicationSccoccveiiiiiiiiiiiie e 69
Debugging MPICH Applicationscooovviiiiiiiiiiciiieceee 70
Starting TotalView on an MPICH Jobccccccoovviiiiiii 71
Attaching to an MPICH JODoooviiiiiiiii e, 72
MPICH P4 procgroup Filescccccoiiiiiiiiiiie e 73
Debugging Compag MPI Applicationscccoeevviiiieeiiiiiiieee 74
Starting TotalView on a Compag MPIJobcccoociviiiiiin . 74
Attaching to a Compag MPIJODooooiiiiiiiiii e 74
Debugging HP MPI Applicationscccocooeviiiiiiiiiii e 75
Starting Totalview on an HP MPIJObc..ooooioiiiiiiii 75
Attaching to an HP MPLJODoooiiiiiiiiiccci e 76
Debugging IBM MPI (PE) Applicationscccccooeviiiviiiiiiiiiiie 76
Preparing to Debug a PE Applicationc...cccooviiiiiiiii 76
Starting TotalView on a PEJOD ..o 77
Setting Breakpointsoooiiiiiiiii e 78
Starting Parallel Taskscc.coooiiiiiiiii 78
Attaching to @ PEJOD ..o 79
Attaching From a Node Running poecccccoeeeveeeninn. 79
Attach From a Node Not Running poeccc..ccceevvveeein... 80
Debugging SGI MPI Applicationsccoooviiiiiiiiiiiiieei 80
Starting Totalview on a SGIMPIJobcccocoviiiiiiii e 80
Attaching to an SGIMPLJOD ..o 81
Debugging QSW RMS2 Applicationsccccevviviiiiieiiiiiiiiie 81
Starting TotalView on an RMS2 Jobcoooiviiiiiiiiii 81
Attaching to an RMS2 JODoovviiiiiiiiiii e 82
Displaying Message Queue Stateccccoevviiiiiiiiiiiieeiiieeee 82

TotalView User's Guide

\

Message Queue Display BasiCScccovvviiiiiiiiiiiiiic 83
Message OPETatiONSoooiviiiiiieieeee e 84
MPI ProCess DIVINGvvvviviiiiiiiiiiiiiiiiiiiiiiiiiis 85

MPI Buffer DIVINGcc.ooooiiiiiii e 86
Pending Receive Operationsc..cccoceevviiiioiiiiiieie e 86
Unexpected MESSAZESccvvviiiiiiiiiici e, 87
Pending Send Operationsccccooveiiiiiiiiiiieiieie e 88

MPI Debugging Troubleshootingccccccovvviiiiiiiiie 88
Debugging OpenMP Applicationscc.ccccevveviiiiiiiiiiii e, 89
Debugging an OpenMP Programcccccooeiiiiiiiiiieiiiiee 90
OpenMP Private and Shared Variablesccccccccoiiiiiiil 92
OpenMP THREADPRIVATE Common Blockscoeciin 94
OpenMP Stack Parent Token Linec...ccoooviiiiiiiiiiiiiice 95
Debugging PVM and DPVM Applicationsccccccccoeviiieiiiiiieiinn . 96
Setting Up ORNL PVM Debuggingcc..ccocveveviiiiiiiiiieiiee 97
Starting an ORNL PVM SESSIONovvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 97
Starting @ DPVM SESSIONvvvviiviiiiiiiiiiiiiiiiiiiieiiiii 99
PVM/DPVM Automatic Process ACQUISITIONccccoeeeiieiieeiiennnn, 100
Attaching to PVM/DPVM Taskscccccooviiiiiiiiiiiiiiii e 101
Shared Memory Code ..o 103
Debugging Portland Group, Inc. HPF Applications 104
Starting TotalView with HPFccoooiiiii 106
Dynamically Loaded Libraryc.c.ccocoooiiiiiiiiiii 107
Setting Up PGI HPF Compiler Defaultscoecciiiii 108
Setting Up MPICH ... 108
Setting TotalView Defaults for HPFcccccccooviiiiii 108
Compiling HPF for Debuggingccccooviiiiiiiiiiiiie 109
Starting HPF Programseuvvveeiimiiiiiiiiiiiie e 109
PGI HPF smp and rpm libraries...........ccccccooeoiiiiviiiic 109
Starting HPF Programs with MPICHoe . 110
Workstation Clusters Using MPICH...............cc....ooooiiiei . 110

IBM Parallel Environmentc..cooeevviiiiiiiiieeeee 110
Parallel Debugging TipSccooviiiiieiieecee e 110
General Parallel Debugging TipsS........ccccooiveiiiiiiiiiiiieeieee 110
MPICH Debugging TiPScvveeeiveieiiee i 112
IBM PE Debug@ing TiPSccooiiiiieiiieeeeeee e, 113

6 Debugging Programs

Finding the Source Code for Functionscccc..cccoeviiiiiinien . 115
Resolving Ambiguous Namescoooveiiiiiiiiiiiiiii 116

TotalView User’s Guide Version 4.1

Version 4.1

Contents

Finding the Source Code for Filesccccccvvviiiiiiii 117
Examining Source and Assembler Codecoocccoooviiiiiiiii 118
Current Stack Frameoccooiiiiiicecc e 120
Editing SOUICE TEXLooviiiiiie e 121
Changing the Editor Launch Stringccc.cooooiviiiiie, 121
Interpreting Status and Control Registerscccccoevvviiiieeen... 122
Stopping Processes and Threadsccccooivviiiiiiiii 122
Holding and Releasing ProCeSSEScooviiiiiiiiiiiiiiiiiiiii e 123
Examining Process GroupScocoeeeveiereiiiiiieieeeieeeeeeee e, 124
Displaying Process GrOUPScc...ccoveeeveeeiiieieiiie i, 125
Changing Program GIrOUDScc.ccoiueeiireeeiieeeeiee e, 126
Finding ACtiVe PrOCESSESoooiiiiiiiiiiice e 127
Starting Processes and Threadsccccccooovviiiiiiiiii e 128
Creating a Process without Starting itcccccoiiviiiii . 129
Creating a Process by Single-Steppingc...ccocoeveviieiiiiiinn. 129
SINGLE SLEPPING ©.veiieeieiieeeeee e 130
Process-level Single StepPINGcocovvvvviiiiiiiiiieieeee 131
Group-level Single StepPINGccvveiiiiiiiiiii e 131
Thread-level Single StEPPINGcoovvviiiiiiiiciece e 132
Thread-level CONtrol.........c...oooiiiiccee e 132
Selecting Source LINESc...oooiiiiiiiicce e, 133
Single-Step COMMANTSc..oooiviiiiiiiie e 133
Stepping Into Function Callsc..cooiiiiiiii 134
Stepping Over Function Callsccooociiiiiiii 135
Executing to a Selected Lineccoocovviiiiiiiii 135
Executing to the Completion of a Functioncc...ooon. 137
Displaying Thread and Process Locationsc...ccccoeeeiveeeinnenn.. 138
Continuing with a Specific Signalc..ccooiiiiiiii 139
Setting the Program COUNLETcooviiiiiiiiiicieece e 140
Deleting Programsccccoiiiiiiiie e 142
Restarting ProgSramscooooooeiiiieieieiice e 142

Examining and Changing Data

Displaying Variable WINAOWSccc.cccooiiiiiiiiii 143
Displaying Local Variables and Registers..............ccc...ccooeiiin. 143
Displaying a Global Variablec..cccoocoii 145
Displaying All Global Variablesc..cccoccooiiiiiiii 145
Displaying Areas of MEMOIYccoooiiiiiiiiiii i 146
Displaying Machine INStructionsccccccoviviiiiiiiiiiieeien 147
Closing Variable WINdOWsccccccoooiiiiiiii e 147

TotalView User's Guide

Vi

Diving in Variable Windowscccccccooiiiiiiii e 147
Changing the Values of Variablescccooviiiiiii 149
Changing the Data Type of Variablesccccccooiiiiiiii 149
How TotalView Displays C Data TYPESccceeeevieiieeiiineeeiieen 150

C CASE SYNTAK ottt 151
POINTEIS tO AITAYS ..ovviiiiiiee e 151
AITAYS oo 151
TYPEAELS oo, 152
SEIUCTUTES oo 152
UNUONS ittt 153
BUIIt-IN TYPES .o, 153
Character arrays (<string> Data TYP€)cccccevvvvvreeiiiinin 155
Areas of memory (<void> Data TyPe)ccc.ccoovveiiiivnneeinn. 156
Instructions (<code> Data TYPE)ccoovvvvviiieiiiiiiiieeieiee 156

Type Casting EXamplescc.coooiiiiiiiiiiieeee e 156
Example: Displaying the argv Arraycccccooveioiiein.. 156
Example: Displaying Declared Arraysc....cccccoeieeen..o. 157
Example: Displaying Allocated Arraysc...ccccooveeeeeen... 157
Opaque Type Definitionsccccccoiiiiiiiiice e, 157
Changing the Address of Variablesccocccciiiii 158
Changing Types to Display Machine Instructions 158
Displaying C+ 4 TYPES .vviiiiiiiiie e, 159
ClASSES ... 159
Changing Class Types in CH+ . ..o 160
Displaying FOrtran TYPEScovviiiiiiieiiee e 161
Displaying Fortran Common Blocks............cccccoooviiiiii 161
Displaying Fortran Module Dataccccooooviiiiiiiiicci 162
Debugging Fortran 90 Modulescccooiiiiiiiiii 162
Fortran 90 User Defined TYPEc..oooviiiiiiiiiiciieceee 164
Fortran 90 Deferred Shape Array TYPEcoovvviiiiiiiiiiiiiiieiee 164
Fortran 90 POINter TYPE ...ovvvviiiiiei e 165
AATTAYS o 166
Displaying Array SHCEScccooviiiiiiiiiiii e 167
Slice DefiNitioNScoooiiiiiiiii e 167
EXampPle 1 .o 169
EXamMPIE 2 .o 169
EXampPle 3 .o 169
EXampPle 4 .o 170

Using Slices in the Variable Commando....... 170

Array Data FIlteringcoocooiiiiii e 171

viii TotalView User’s Guide Version 4.1

Version 4.1

Contents

Filtering by CompariSONccocoiiiviiiiiiiii e 172
Filtering for IEEE Valuesccccccooviiiiiiiiciiee 173
Filtering by Range of Valuescccocooiiiiiii 173
Array Filter EXPressionsccccoooviiviiiiiiiiiiieee e 175
Filter COMPAriSONScccoiiiiiiioiiiiii e 175
Filtering Array Dataooooooiiiiiiiiceecc e 176
Sorting Array Data ... 176
Array StatistiCsoooooeiiiiiiiii i 178
Displaying a Variable in All Processes or Threads 180
Diving in a Laminated Panecc..ccooiooiiiii i 182
Editing a Laminated Variablecc.ccoooiii 183
Visualizing Array Datacooovvviiiiiiiie e 183
Visualizing a Laminated Data Panecc.ccccooeviiiiiiicncei 183
Displaying Thread Objectsccooiiiiiiiiiiii e 183
Displaying Mutex Informationccocoiiiiiii 184
Displaying Condition Variable Information 188
Displaying Read-Write Lock Informationccooon 191
Displaying PThread-Specific Data Key Information 193
Setting Action Points
Action POINtS OVEIVIEWoviiiiiii 196
Setting Breakpoints and Barrierscccccoiviiiiii 197
Setting Source-Level Breakpointscccccceiviiiiiiiiiii 197
Selecting Ambiguous Source LiNeSccccoeeviviiiiiiiiiinnnnn, 198
Diving into Ambiguous Source Linescc.ccceeeeen.n, 199
Toggling Breakpoints at LOCAtioNScc..cooveveiiiiiiiiiiiiiiin, 200
Ambiguous LoCatioNScoooiviiiiiiiiccc e 201
Setting Machine-Level Breakpointscccccccoviiiiiiiiiii 201
Thread-Specific Breakpointscccooeiiiiiiiiiiiiii 203
Breakpoints for Multiple Processescccccccvviiiiiiiiiicei 203
Breakpoint when using fork()/execve()c.coovvvvieiieiiiiiien. 205
Processes That Call fork()coooovviiiiiiii 205
Processes That Call €XECVE() ...oovvvvviiiiiii 205
Example: Multiprocess Breakpointcccoceeviviiiiiiiiiiici 206
Process Barrier Breakpointsccc.cccooviiiiiiiiiiiii 206
Process Barrier Breakpoint States...........cccooovvviiiiiieiii 206
Setting a Process Barrier Breakpointcccccoooviienninnn, 207
Releasing Processes from Process Barrier Points 208
Deleting a Process Barrier POINtcccooiiiiiiiiiiii 208
Changes when Setting and Clearing a Barrier Point 210

TotalView User's Guide

ix

X

Toggling Between a Breakpoint and a Process Barrier Point 210
Displaying the Action Points Windowcccooeciiiiiiii 210
Displaying and Controlling Action Pointscccccccceeeiiinn. 211
Defining Evaluation POINScc.oooiiiiiiiiiccccee e 213
Setting Evaluation POINtScc..oooiiiiiiiiic e 214
Setting Conditional Breakpointscccoooiiiiiiii 215
Patching ProSramsccccciiiiiiiiiieiei e 215
Conditionally Patching Out Codec....ccoooviiiiiii 215
Patching In a Function Callc...cooooooiiii 216
Correcting COAEviiiiiiiic e, 216
Interpreted Versus Compiled EXpressionscccccccoveeeieennn .. 217
Interpreted EXPressionscc..ooovovviiiiiiiiieeciieeceeee e 217
Compiled eXPresSSionscccccooviiiiiiiiiecce e 218
Interpreted Versus Compiled Expression Performance 219
Allocating Patch Space for Compiled Expressions 220
Dynamic Patch Space Allocationcccccooveviiiiiin, 220
Static Patch Space Allocationccccccovviiiiiiiiiiiiiii 221
Controlling Evaluation POINtSccooviiiiiiiiiiiic 222
UsiNg WatChPOINTS ..vviiiiiiiie e 223
ATChItECTUIES ...iiiiiiiiie e 223
Creating WatChpoINtScooiiiiiii i, 225
Displaying Watchpoints using the Action Points Window228
Watching MEemOIYooooiiiiiioie e 228
Triggering WatChpOINtScooooviiiiiiiiicc e, 229
The Program Counter after a Watchpoint Triggers 229
Multiple WatChpointscooovviiiiiiici e 229

Data COPIES ..o 230
Conditional Watchpointscoccccooviiii 230
Saving Action Pointsin a File ... 232
Evaluating EXPressionscccocoiiiiiiiiiiee e 233
Writing Code Fragmentscoooviiiiiiiiii i 235
Intrinsic Variablesc.coooiiiiiiice e 235
Built-In Statementscccoovviiiiiiiicie e, 237

C Constructs SUPPOrtedoooviiiiiiiei e 239
Data Types and Declarationscccccoooviiiiiiiiiiii, 239
SLATEMENTS .oviiiiiiiiieiee e 240
Fortran Constructs Supportedccooviiiiiiiiiiii 241
Data Types and Declarationscccccoooviiiiiiiiiiie, 241
SLATEMENTS ..ot 242
Writing Assembler Codeoooiiiiiii 242

TotalView User’s Guide Version 4.1

Version 4.1

10

11

12

13

Contents

Visualizing Data

How the Visualizer Works ..o 247
Configuring TotalView to Launch the Visualizer 249
Data Types that TotalView Can Visualizeccccccooiiiii . 251
Visualizing Data from the Variable Windowccccccoein. 252
Visualizing Data in EXPressionsccccccooviviviiiiiiiiiiiei e 253
Visualizer ANiMationcc.oovvioiioiiiiiieeeee e, 254
The TotalView Visualizerc.cccooiiiiiiiii e, 254
Directory WINAOWccviiiiii e 255
Data WINAOWS oviiiiiccei e 256
VIEWS Of DALA ...ioviiiiiiiiii e 258
Graph Data WiNdOWooooiiiiiii e 259
Displaying Graphscccccooiiiiiiiii e, 260
Manipulating Graphsccccccooiii 260
Surface Data WINAOW ..ot 261
Displaying Surface Dataccccccoooiiiiiiiiicci 262
Manipulating Surface Datacccoooviiiiiiiiici e, 264
Launching the Visualizer from Command Line 265
Adapting a Third Party Visualizerccccccoiiiiiiiiii, 266
Troubleshooting
OVEIVIEW ittt 269
The Problems ..o, 270
X Resources
TotalView X RESOUICESooiiiiiiiiiiiii e, 275
Visualizer X RESOUICESocciiiiiiiiiie e 295

TotalView Command Syntax

)7/ 1= D 299
(0] o] u(0) o = 300
TotalView Debugger Server Command Syntax

The tvdsvr Command and its Optionscccceeviiiiiiiiiiiiii e, 311
Replacement CharacCterscooovoiiiiiiiiieceeeee e 315

Compilers and Environments

Compiling with Debugging Symbols..............cc.ccoooviveiiiiiiei 319
AIX on RS/6000 SysStemsccoooeviveiiiiiiiiiiieieiceee 320
Compaq Trubd UNDX ... 321
HP-UX o 321

TotalView User’s Guide Xi

IRIX 0N SGI MIPS SYSEEMSvvviviiiiiieee e 322
SUNOS 5 0N SPARC ... 323
Using Exception Data on Compaq Tru64 UNIX 324
Linking with the dbfork Library ..., 324
AIX on RS/6000 Systems..........coooovviiiiiiiiiii 325
Linking C+ + Programs with dbforkccoocc 325
Compaq Trub4 UNIX ... 326
HPAUX e 326
SUNOS 5 SPARC ..o, 327
IRIXE-MIPSooiiiiiiiiee e, 327
B Operating Systems

Supported Operating SYSLEMSc...coovviiiiiiiiiieeie e 329
Mounting the /proc File Systemcc.ccoooiiiiiiiiiiieie 330
Compaq Tru64 UNIX, SunOS 5, and IRIX.............cccoveeiiininnenn, 330
Compaq Tru64 UNIX and SUNOS 5cccooviiiiiiiiiiieicie 331
IR 331
SWAD SPACE oo 331
Compaq Trubd UNIX ..o 332
ADX e, 333
HP HP-UX e 333
Maximum data SIZ€ccccooiiiiii 334
SUNOS B e 335
TRIX oo, 335
LNUX Lo 336
Shared LIDrariescccoovioiiiiiiciec e, 337
Using Shared Libraries on HP-UXcccooiiiiiiiiii 338
Debugging Dynamically Loaded Librariesccccccoooviiiien . 338
KNown LimitationSoovuiiiiiiii e 340
Remapping Keys ... 341
EXPression Systemocooooiiiiiiiiiiiiiii 341
IBM AIX oo e 341
Compaq Trub4 UNIX ..o 342

S I IRIX e 342

C Architectures

POWET .o 343
Power General ReGISTErS.........cc..ooiiiiiiiiiiii e 343
Power MSR REGISLEr ... 344
Power Floating-Point REGISTErScccoovviiiiiiiiiiiiiiiiii 345

Xii TotalView User’s Guide Version 4.1

Version 4.1

Contents

Power FPSCR REGISTELovviiiiiii 346
Using the Power FPSCR REGISTETcoovviiiiiiiiiiiiiieeece 347
Power Floating-Point FOrmatcccccoooiiiiiiiiiiiiiiicce 348
HP PA-RISC ..o 348
PA-RISC General REGISTEIS........ccooiiiiiiiiiiiieeeeeeeeee 348
PA-RISC Process Status Wordcc.coooiiiviiiiieiieeeee e 349
PA-RISC Floating-Point REGISLEIScc...coovviiiiiiiiiiiiiiicce 350
PA-RISC Floating-Point Formatc...cccoooviiiiiiiii e 351
SPARC ..o 352
SPARC General ReGISterScooviiiiiiiiiiieieec e, 352
SPARC PSR REGISTEToovviiviiiiioiicciee e 353
SPARC Floating-Point ReGIStersccccccoeoviiiiiiiiiiiiiiee 353
SPARC FPSR REGISLEL ..o 354
Using the SPARC FPSR REGISLErccovvvviiiiiiiiieiiiiieeieieeee 355
SPARC Floating-Point Formatccccoooiiiiiiiiie 355
AlDNa 356
Alpha General ReGISErS..........ccooiiiiiiiiiiii e 356
Alpha Floating-Point ReGIStErscccoovviiiiiiiiiiiiieii 357
Alpha FPCR REGISLEL ..o 357
Alpha Floating-Point Formatccccccoooviiiiiiiiiii e 358
MIPS oo 358
MIPS General REGISTEISccviiiiiiiiiei e, 358
MIPS SR REGISLETivviiiiiiiiiiiiii 360
MIPS Floating-Point REGISTErScoovviiiiiiieiieecc 361
MIPS FCSR REGISTET ... 361
Using the MIPS FCSR REGISLErccvviiiiiiiiiiiiiieeeeeeee 362
MIPS Floating-Point Formatccccooviiiiiiiiiiiiiecieee 363
MIPS Delay Slot INStruCtionsccccoovviiiiiieiiiiiieeiceee e, 363
INEEI-XBO ..o 364
Intel-x86 General REGISters.........ccocoooiviiiiiiiiicie 364
Intel-x86 Floating-Point RegiSterscccccvivviiiiiiiiiieeie 365
Intel-x86 FPCR REGISTETvvveiiiiiieie e 365
Using the Intel-x86 FPCR ReGISTErccooviiviiiiiiiiiiiiiiiiee, 366
Intel-x86 FPSR REGISLETccooviiiiiiiicie e 367
Intel-x86 Floating-Point Formatc...cooeiviiiiiiiiiiici, 367
GlOSSANY ..o, 369
INdeX ... 381

TotalView User's Guide

Xiii

Xiv TotalView User’s Guide Version 4.1

About This Book

This guide describes how to use TotalView®, a source-level and machine-level
debugger with an easy-to-use interface and support for debugging multiprocess
programs. The guide assumes that you are familiar with programming lan-
guages, the UNIX operating systems, the X Window System, and the processor
architecture of the platform on which you’re running TotalView.

This guide covers using TotalView on any platform. Most of the examples and
illustrations in this guide show TotalView running on a workstation. To learn
about the specifics of running TotalView on your platform, refer to Appendix A,
“Compilers and Environments,” on page 319, Appendix B, “Operating Systems,”
on page 329, and Appendix C, “Architectures,” on page 343.

Supported Platforms

Version 4.1

TotalView is available for a variety of platforms and can be used to debug
programs on the native platform or on remote systems, such as parallel pro-
cessors, supercomputers, or digital signal processor boards.

If TotalView is not yet available for your system configuration, please con-
tact Etnus® about porting TotalView to suit your needs:

Etnus Inc.

111 Speen Street

Framingham, MA 01701-2090
Internet E-mail: info@etnus.com
1-800-856-3766 in the United States
(+1) 508-875-3030 worldwide

TotalView User's Guide

XV

Xvi

About This Book
_ Reporting Problems

Reporting Problems

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Internet E-Mail addresses: support@etnus.com
United States Phone Number: 1-800-856-3766
Worldwide Phone Number: (+1) 508-875-3030

If you are reporting a problem, please include the following information:

m The version of TotalView

® The platform on which you're running TotalView

B An example that illustrates the problem

m A record of the sequence of events that led to the problem

See the TOTALVIEW RELEASE NOTES for complete instructions on how to
report problems.

Conventions

The following table describes the conventions used in this book:

Table I: Book Conventions

Convention Meaning

[] Brackets are used when describing parts of a command
that are optional.

arguments Within a command description, text in italic represent in-

formation you type. Elsewhere, italic is used for empha-
sis. You will not have any problems distinguishing be-
tween the uses.

Dark text Within a command description, dark text represent key
words or options that you must type exactly as dis-
played. Elsewhere, it represents words that are used in a
programmatic way rather than their normal way.

TotalView User’s Guide Version 4.1

Chapter 1

TotalView Features

The TotalView® debugger is part of a suite of software development tools for
debugging, analyzing, and tuning the performance of programs, including mul-
tiprocess multithreaded programs.

This chapter highlights:

B TotalView's advantages

B TotalView's windows

B Examining source and machine code

Controlling processes and threads

Using action points

Examining and manipulating data

Visualizing array data

Distributed debugging

Debugging multiprocess and multithreaded programs
B Context-sensitive help

TotalView Advantages

TotalView provides many advantages over conventional UNIX debuggers
such as dbx, gdb, and adb:

B You can learn TotalView quickly and be more productive because of its
Graphical User Interface (GUI) that is based on the X Window System.
TotalView provides windows, pop-up menus, and context-sensitive help.

B TotalView's interface lets you see a lot of useful information without
entering commands.

Version 4.1 TotalView User's Guide

1 TotalView Features
_ TotalView Advantages

® You can debug multiprocess multithreaded programs. TotalView displays each
process in its own window, showing the source code, stack trace, and
stack frame for one or more threads in the process.

B You can display all process windows simultaneously and perform debug-
ging tasks across processes.

m TotalView's distributed architecture lets you debug remote programs over
the network.

TotalView
Remote
| Debugging
\4

Remote

Native Executable

Executable

&

Network |

FIGURE 1. Debugging a Remote Program with TotalView

TotalView can manage multiple remote programs and multiprocess multi-
threaded programs simultaneously, as shown in Figure 2.

TotalView

Distributed
Debugging Distributed Executables
T,

7y
>

Native

Executable \ 4 Y

= .0 0

e NG '_.._\z_\g AT ..
Network | I | |

Figure 2: Debugging a Distributed Program with TotalView

TotalView User’s Guide Version 4.1

TotalView Features

TotalView Windows

B Parallel and distributed programs run in many processes, and your debug-
ger must know about them. When you start TotalView as part of an HPF,
MPI, PE, or PVM, application, TotalView automatically detects and at-
taches to these processes. This is called automatic process acquisition.

B Because TotalView lets you attach to running processes, you can debug
processes that were not started under TotalView's control.

B TotalView lets you temporarily add source code statements to the pro-
gram you are debugging. On some platforms, you can even add machine
code statements. This feature saves time when you are testing bug fixes.

m [f the code you are debugging was not compiled using the —g option or if
you do not have access to the program'’s source file, TotalView lets you
debug its machine-level code.

B TotalView’'s Command Line Interface lets you enter commands directly in
an xterm window when you find yourself unable to use the GUI. (The CLI is
described in the CLI USER'S GUIDE.)

TotalView Windows

Version 4.1

TotalView displays extensive information in its windows, as shown in
Figure 3 on page 4. This figure shows four windows:

Root Lists the name, location (if a remote process), process
ID, status, and, optionally, a list of threads for each
process being debugged. It also shows the thread ID,
status, and current routine executing for each thread.

Process Displays information about a process and a thread
within that process. It also shows the stack trace, stack
frame, and source code for the selected thread in a
series of separate panes. Optionally, it displays disas-
sembled machine code or interleaved source code and
disassembled machine code.

Process Groups Shows the process groups for all multiprocess pro-
grams you are debugging.

Variable Contains the address, data type, and value of a local
variable, register, or global variable. It also shows the
values (and optionally, the machine-level instructions)
stored in a block of memory.

TotalView User's Guide 3

1 TotalView Features
_ Multiprocess Programs

Root Window

SRR NSRS (IX TotalView 3X.7.5 SEAINEREPURNNE

4 22008 T filter Cin ,listen_and_accept) [}
1727683 T in . listen_snd_sccept
4T Filter.d Cin Ldriver)
1733325 T in Ldriver
4 22780 T Filkerdexpro.Ld {in .__start)
23T T in .__start

Process Windows

Process 24440: filter.l (Stopped?

D Cbinma,dox] 0 - generate

o

Function *.listen_and_accept.":
00002634 (9876)

part:
Local wariables:

rt 0x00000000 (03
list_fds (00000003 (3
peer_fd: OxFFFFFFFF (-1)
l1st_sa: (Compourd Object)
peer_sa; {Conpound Object)
addr_len: 000000010 <16)
pid:

Process Groups Window

SN List of ALl Process Groups MRS SR

% process groups. I

Filter:Sharebroup (443
filter:Progranbroup (453
Filterdexpr>, 1,115harebroup (#14)
generate;Sharebroup (#20)
generate:Frogranbroup (4213

List_sa.sin_add-.s_add- = INADIR_ANY:
List_sa,sin_port = htons ((short} port):

List _sa.sin_fanily = AF_INET:

rv = bind ¢list_fd, (struct sockaddr) &list_sa, sizeof (list_sall:

rv = listen tlist_fd, 9);

for €332 {
set_to_zern ((char %) dpeer_sa, sizeof (peer_sadi:
addr_len = sizeof {peer_sal?
peer_fd = accept (list_fd, {struct sockaddr) bpeer_sa, baddr_len):
if {peer_fd < 0}
continue:
pid = fork{dr
if {Ipid}

Variable Window

break:
close tpeer_fdis

OO o L3 sten_and_accepts1ist_sa €27252,1) NOMNNIOHNN IR0 ORE OO
&

{at Ox2FF21eBB) Type: struct sockaddr_in close {list_fd);

return {peer_fd)

Field Type Value
sin_len u_char 740007 (0xD0, or 0) - Thread (1) | Fction Points
sin_fanily uchar 0027 (0x02, o 2) —— — . -
oot it oaad (areh inlis 3 line 57 in ,listen_and_accept+0xed
sin_addr struct in_addr (Cowpound Dbject)

s_addr in_addr_t 000000000 ¢0)
sin_zero Cstringdlal I

Figure 3: Sample TotalView Session

Multiprocess Programs

TotalView has special features for debugging multiprocess programs.

B Process groups

TotalView treats multiprocess programs as process groups. When debug-
ging multiprocess programs, you can view information about all process
groups and can view information about a multiprocess program. Using
TotalView, you can start and stop individual process groups.

B Separate windows for each process

Each process has its own process window displaying information for that
process. You can monitor the status, thread list, breakpoint list, and
source code for each process. You do not have to display all the process
windows in a multiprocess program; instead, you can choose which pro-
cess windows to display.

4 TotalView User’s Guide Version 4.1

TotalView Features

Multithreaded Programs

m Sharing of breakpoints among processes

You can control if a breakpoint is shared among child processes and if all
processes in the group stop when any process in the group reaches a
breakpoint.

Process barrier breakpoints

In addition to "normal” breakpoints, TotalView allows you to create pro-
cess barrier breakpoints. A process barrier breakpoint differs from a regu-
lar breakpoint in that it holds every process that reaches the barrier until
all processes in the group reach it. When the last process in the group
reaches the barrier, TotalView releases all of these held processes. Be-
cause TotalView will not let you release a held process, a barrier lets you
synchronize a group of processes to the same location.

Process group-level single-stepping

TotalView allows you to single-step groups of processes using one com-
mand.

Single event log containing information for all processes

TotalView logs significant events about each process being debugged.
Thus, you can view the history of your entire debugging session by scroll-
ing through the Event Log Window.

Automatically attach to child processes

If a program calls fork() or execve(), TotalView automatically attaches to
the child process and includes it in the process group.

Multiple symbol tables

If you are debugging more than one executable at a time, TotalView auto-
matically handles the symbol table for each.

Multithreaded Programs

Version 4.1

While the way in which operating systems implement threads vary, most
share the following characteristics:

m Shared address space

The threads share an address space (memory) with other threads. They
can read and write the same variables and can execute the same code.

B Private execution context

Each thread has its own general-purpose and floating-point registers.

TotalView User's Guide 5

1 TotalView Features
_ Controlling Processes and Threads

m Thread private data

Some operating systems allow a program to declare thread private data.
This information provides each thread with its own copy of the variable.

Changes made by one thread to its private variables are not seen by other
threads.

® Private execution stack
Each thread has an address space reserved for its execution stack. How-
ever, one thread'’s stack can be read and written by other threads sharing
the address space.
TotalView supports debugging threaded applications on a variety of operat-
ing systems. On some of these systems, a process consists of an address
space and a list of one or more threads. Other operating systems implement
tasks or threads running in the computer’s memory space and do not sup-
port multiple processes or address spaces on a single machine.

Because the ways operating systems handle threads differ, TotalView imple-
ments a general model of address spaces and execution contexts. A Total-
View thread refers to thread or task with an execution context, and process
refers to an address space or computer memory that can run one or more
threads.

Controlling Processes and Threads

TotalView offers a full range of methods for controlling processes and
threads. Using TotalView, you can:

m Start and stop processes and threads
You can start, stop, resume, delete, and restart your program.
m Attach to existing processes

TotalView lets you examine processes that are not running under its con-
trol. Attaching to one of these processes is as easy as diving on it.

® Examine core files

You can load a core file and examine it in the same way as any other exe-
cutable. Or, you can load a core file anytime during while debugging.

B Reload the executable file

After editing and recompiling a program, you can reload it.

6 TotalView User’s Guide Version 4.1

TotalView Features

Using Action Points

m Single-step your program
You can single step through your program or step over function calls. You
can tell your program to execute to a selected source line or instruction
or continue executing until a function completes its execution. TotalView
supports process level, process group level, and, on some systems,
thread level single stepping.

m Change the way TotalView handles signals

TotalView lets you tailor how signals are handled. For example, it can stop
the process and place it in a stopped or error state, sending the signal on
to the process, or discarding the signal.

m Change the program counter (PC)

You can change the value of the PC to resume execution at a different
point in the program.

Using Action Points

Version 4.1

TotalView provides a broad range of action points. (Action points are places
in a program where you stop execution or evaluate an expression.)

Action points: You can set, delete, suppress, unsuppress, enable, and
disable action points at the source and machine levels. TotalView lets you
set the following action points:

m Breakpoints: stop execution when a statement or instruction executes.

m Barrier breakpoints: hold other threads until all threads in a group
reach a “barrier” statement or instruction.

m Conditional breakpoints: only perform an action if a code fragment
(expression) is satisfied.

m Evaluation points: execute code you create at a statement or instruc-
tion.

m Watchpoints: monitor when changes occur to a variable’s value.

Expressions and code fragments: TotalView lets you write and
evaluate fragments of code, including function calls used by the current pro-
cess. While differences exist between platforms, you can write fragments in
C, C++, Fortran, and assembler. On most platforms, TotalView compiles
code fragments.

TotalView User's Guide

1 TotalView Features
_ Examining and Manipulating Data

Examining and Manipulating Data

TotalView provides many ways for you to examine your code. Here are two
methods.

m Search for functions
You can search for functions using a dialog box.
m Dive on function

You can click your right mouse button on a a function’s name to tell the
debugger to display the function’s source code in the Source Code Pane
of the Process Window. (This process is called diving.)

Similarly, TotalView lets you examine and manipulate data in your program,
as follows:

m Dive on variables

You can dive into a variable in the same way that you dive into a function.
That is, you click the right mouse button while the cursor is over the vari-
able. (You can also dive into a variable using a menu command.) TotalView
lets you examine local variables, registers, global variables, machine-level
instructions, and areas of memory. In all cases, TotalView displays this
information in a separate variable window.

m Change types
You can alter a variable’s type to display the data in different formats.

® Change values

You can edit the value of a variable or a memory location, changing it for
the current running process.

® Laminate variables

You can examine the value of a variable across multiple processes and
multiple threads in a single data window. (This ability to display the multi-
ple values of a variable is called lamination.)

m Examine array data
You can filter array data to look for elements that match a filter expres-
sion. You can also sort data and tell TotalView to display statistical infor-
mation about an array’s contents.

8 TotalView User’s Guide Version 4.1

TotalView Features

Visualizing Array Data

Visualizing Array Data

The TotalView Visualizer allows you to graphically view array data in the pro-
grams you are debugging. This gives you an overall picture of your data and
helps you to find incorrect data quickly and easily.

NOTE The Visualizer is not available on all platforms.

You can visualize array data using the:

m Visualize variable window menu command

This command tells TotalView and the Visualizer to show you a visual
snapshot of the array data listed in the window. Each time you visualize
the same array, the Visualizer image is updated.

m Svisualize statement

You can use the $visualize statement from the Expression Evaluation
Window and within evaluation action points to visualize one or more data
sets within a single expression. Each time TotalView evaluates an expres-
sion, the Visualizer updates the images that it is displaying. This allows
you to animate the visual representation of your data.

TotalView also allows you to use your own visualization program.

Distributed Debugging

Version 4.1

TotalView provides a distributed architecture that supports many different
operating environments, including:

B Remote programs running on a separate machine from TotalView.
B Distributed programs running on a set of homogeneous machines.

NOTE Distributed debugging requires that all machines have the same archi-
tecture and operating system.

® Multiprocess programs running on a multiprocessor machine.
B Multiprocess programs running on a cluster of homogeneous machines.

m Client-server programs with the server running on one machine type and
the clients running on another machine type.

TotalView User's Guide 9

1 TotalView Features
_ Context-Sensitive Help

The machine on which TotalView is running is known as the host machine,
while the machine on which the process being debugged is running is the
target machine. The host and target machines can be the same machine.

If the host and target machines are different, TotalView starts a process on
each remote target machine. TotalView communicates with this process
using standard TCP/IP protocols.

TotalView

TotalView
| Debugger

Server

Remote

Native Executable

Executable

Network |

Figure 4: TotalView Debugger Server

Debugging distributed programs does not differ from debugging non-dis-
tributed programs: TotalView offers the same set of rich features to both.

Depending on the platform, TotalView can debug programs that use the HPF,
MPI, IBM Parallel Environment (PE), OpenMP pthreads, and Parallel Virtual
Machine (PVM) libraries.

Context-Sensitive Help

You can request help from any window being displayed. The Help command
displays context-sensitive information about the current window or dialog
box or the debugging operation you are currently using. TotalView displays
the information in a separate help window.

10 TotalView User’s Guide Version 4.1

Chapter 2

TotalView Basics :

This chapter introduces you to the TotalView interface and describes how you:

B Compile your program

B Start TotalView

Use the mouse buttons and menus
Get online help

Use the windows

Dive into objects

Edit text

Search for text strings

Use the spelling corrector

Save a window's contents

Exit from TotalView

Compiling Programs

Before you start TotalView, compile your source code with the —.g compiler
option, which generates symbol table debugging information. For example:

CC —g source_program —0 executable

For more information on compiling your program for TotalView, see “Compil-
ing Programs” on page 29.

On some platforms, you may need to use additional compiler options. Refer
to Appendix A, "Compilers and Environments” on page 319 for more informa-
tion.

Version 4.1 TotalView User's Guide 11

2 TotalView Basics

TotalView also lets you debug programs that were not compiled with the —g
option or programs for which you do not have source code. For more infor-
mation, refer to “Examining Source and Assembler Code” on page 118.

When TotalView reads a file, it uses the file’s extension to determine the pro-
gramming language that you used to write the file’s contents, as shown in
the following table.

TABLE 1: Source Language Mapping

File Extension Source Language

.CXX, .cc, .cpp, .C, .hxx, .H C++

.F .f, .F90, .f90 FORTRAN 77 or Fortran 90
.hpf, .HPF HPF

All others C

TotalView identifies a program as FORTRAN 77 or Fortran 90 when:

m The compiler explicitly specifies the language in the debug information.

B The source filename has an .f90 or .F90 suffix.

B The code uses Fortran 90 features such as assumed shape arrays or
pointers.

If TotalView cannot identify a source file’s language, it assumes that the

source language is C. If this is a problem, you'll need to change the file's

extension to one that TotalView recognizes.

Starting TotalView

12

Depending on the kind of program you are debugging, there are several way
to start TotalView. The simplest method uses the totalview command and
your program’s name:

totalview exectuable
A similar command can be used to start the CLI:
totalviewcli executable

The CLI is described in the CLI USER’S GUIDE.

TotalView User’s Guide Version 4.1

TotalView Basics

Using the Mouse Buttons

The program you are debugging may require options or that you invoke
TotalView in a different way. For more information, see:

W “Starting the TotalView Debugger” on page 30.
m Chapter 5, “Setting Up Parallel Debugging Sessions” on page 69.

m The totalview command syntax, described in Chapter 12, “TotalView Com-
mand Syntax” on page 299.

Using the Mouse Buttons

Version 4.1

TotalView uses the buttons on your three-button mouse as follows:

TaBLE 2: Mouse Button Functions

Default

Position Button Purpose How to Use It

Left Select Select or edit object, Move the pointer over the
scroll in windows and object and click the button
panes

Right Dive Dive into object to Move the pointer over the
display information object and click the button
about it

Middle ~ Menu Display pop-up menu Move the pointer into the
window and hold down the

button
Select command from Move pointer down the menu
menu until the desired command is
highlighted, and release the
button
Leave menu without Move the pointer off the menu
selecting command and release the button

In the tag field area (the area on the left containing source code numbers) of
the Source Code Pane, the Select (left) button has a special function: select-
ing the line number sets a breakpoint at that line. TotalView responds by dis-
playing a STOP icon in the tag field.

Selecting the STOP icon removes the breakpoint. If an evaluation or event
point was set (indicated by an EVAL or ELOG icon), selecting the icon dis-

TotalView User's Guide 13

2 TotalView Basics
_ Using Menu and Keyboard Commands

ables it. For more information on breakpoints, evaluation points, and event
points, refer to Chapter 8, "Setting Action Points” on page 195.

Using Menu and Keyboard Commands

Each window has its own set of commands that are invoked using a pop-up
menu. These commands let you examine and manipulate the displayed in-

formation. Figure 5 shows an example of the Process Window menu and one
of its menu. To display a pop-up menu in the current window, click the mid-
dle mouse button.

Close Window q
Cloge Windows for Relatives]
Arguments/CreatesSignal

GorsHalt/Step/NextHold ==

Function/File/Yariable == ggt EﬁzTﬁg:mSEEu$22§§Biés |
Current/Update/Relatives = Irput Fram File T <
Tizplay/Directory/Edit == Output to File e 5
B AEm e I

Procesz State Info

Open Expresszion Mindow

B vah

Search for String

Egﬁ?,Nlndow to File KE?? Set Signal Handling Mode,,,

help ng | Bt Process Progran BrouPse oo

Reload Executable File

Figure 5: Pop-up Menu and submenu

Many commands have keyboard shortcuts. For example, typing the letter q
while in the Process Window invokes the Close Window command. Key-
board shortcuts are shown to the right of the menu command.

On the far right size of many menus is a hand with a finger pointing to the
right. Placing your cursor on these lines and dragging your mouse to the
right tells TotalView to display a menu with additional commands. Note that
if a menu item is dimmed, the item is currently disabled.

The following commands are only available from the keyboard:

Ctrl-C Cancels a single-step operation and other time-con-
suming operations, such as searching for a string.

14 TotalView User’s Guide Version 4.1

TotalView Basics

Getting Help
Ctrl-L Refreshes the current window.
Ctrl-Q Exits from TotalView.
Ctrl-R Raises the Root Window.
Shift-Return Exits from the field editor that you are using to edit
text.

Getting Help

You can request help from any TotalView window or dialog box by selecting
the Help command from the pop-up menu or by pressing Ctrl-?. When you
request help, a separate Help Window appears. To close the Help Window,
select the Close Window menu command.

Using the Primary Windows

Version 4.1

After starting TotalView with the name of the program being debugged, two
windows appear:

m The Root Window displays a list of all the processes that you are debugging,
and optionally a list of threads for each process. Initially, the Root Win-
dow only contains the name of the program being debugged.

m The Process Window displays the thread list, action point list, and the se-
lected thread of the process you are debugging. It also displays the
source code, stack frame, and stack trace of the selected thread in that
process. Initially, this window only contains your program’s source code.
Other information is added as your program executes.

Figure 6 and Figure 7 show the Root and Process Windows.

Starting a Process

To start a process:
1 Move your cursor to the Process Window.
2 Set a breakpoint in the source code by selecting a boxed line number.

3 Type the keyboard accelerator g (for the Go Process command). The
process starts running and then stops at the first breakpoint set.

TotalView User's Guide

15

2 TotalView Basics
_ Using the Primary Windows

2] [3)

1)

Wmm}{ Totalfiew 3%]8,0-3 B g mg s

27542 71 /. txsort_t (B threads) it

1420419 k at (a0
2431173 at (a0

——— 373523 K at. Q00000
434201 Bl in ,forksort
hA19EES T in ,_pthread_body
B/1991F T in ,_pthread_body

[[r‘gr‘|een—1*] 0408 ﬁ Srxzort_t {2 threads)

L)

(6] o 00

Collapse/expand toggle ® Remote process location
Process ID (pid) Thread ID (tid/systid)
Thread status Process status

Program name Thread Status

Thread list

Figure 6: Root Window

0000e
®eQ

When debugging a remote process, TotalView displays an abbreviated ver-
sion of the hostname on which the process is running within square brack-
ets in the Root Window. The full hostname appears in square brackets in the
title bar of the Process Window. In Figure 7, the process is running on the
machine rgreen-loaner.dolphinics.com, which is abbreviated to [rgreen-I1*]
in the Root Window.

As you examine the Process Window in Figure 7, notice the following:

B The thread ID shown in the Root Window and in the process’s Thread List
Pane is the TotalView assigned logical thread ID (or tid) and system
assigned thread ID (or systid). On systems such as Compaq Tru64 UNIX
where the tid and systid values are the same, TotalView displays only the tid
value.

In other windows, TotalView uses the value pid.tid to identify a process’s
threads.

16 TotalView User’s Guide Version 4.1

Version 4.1

TotalView Basics

Using the Primary Windows

Stack Stack Frame
Trace Pane e 6 Pane ﬁr
% Process [rgreen-loandr,dolphinics,com] 169203 twsorft_t / m|@
@—— Thread [rgreen-loaner,dolphinics.con] 16320,7: (Stopped) |
Stack Tr‘ace St;ék Frame

b Function ", sort"s i

00— Forksort, FP=202dc10c datay x2029e09c —> (Conpound Obj
Lbxwrap, FP=202dc14c Local variables:
+_pthread_body, FP=202dc19c pivot: 02022d118 -> "the"
temp: 0x20230768 -> "trace”
it Ou000002de (7323
Ji 00000041 (10523
count: (0000063F (15993
words: 0x2023F494 > 0x2021eell >
Iy left: {Compound Object}

Function .sort in txsort,c

words[i] = words[count-11;

/% partition the array so that the pivot value divides the array
z0 that all elements below the pivot have values less than the
* pivot and all element abowe the pivot have wvalues greater than
* the pivot

*/

for &i = -1, j = count-1: ¢
i

do £ 1 += 13 ¥ while (strceplwords[il, pivoty < 033
do £ j -= 1: * while {strempiwords[jl, pivot} > 0):
if 41)

break:
tenp = word=[i]:

word=[i] = words[jI1:
words[j] = temp:
¥

209
Q—WThreads (L0) SRRRRRHERRRRRRR | BRI fiction Points 2%
517047 K at 00000) 7 lind 293 in ,forksort+0xi8 [
E/3483 T in ,_pthread_bod: d 4 ling 311 in .main+0x24
(10— in []
8/24733 T in ,_pthread_body |=l -
9/24227 13 / in forksort {4 4
Thread List Source Code Action
Pane Pane Points Pane
O Process status ® Language of routine
® Process ID (pid) @ Tag field area
® Process and thread ID (pid.tid) @ Current PC
® Navigation controls O Thread count
® Thread status @® Selected thread

Figure 7: Process Window

m The Thread List Pane shows the list of threads that currently exist in the
process. The number in the Thread List Pane title (@) is the number of
threads that currently exist in the process. When you select a different
thread in this list, TotalView updates the Stack Trace Pane, Stack Frame

TotalView User's Guide 17

18

TotalView User’s Guide

TotalView Basics

Using the Primary Windows

Pane, and Source Code Pane to show the information for that thread.
When you dive on a different thread in the thread list, TotalView finds or
opens a new window displaying information for that thread.

Holding down the Shift key when you dive tells TotalView to open a new
Process Window focused on that thread.

The Stack Trace Pane shows the call stack of routines that the selected
thread is executing. You can move up and down the call stack by selecting
the routine (stack frame). When you select a different stack frame, Total-
View updates the Stack Frame and Source Code Panes to show the infor-
mation about the selected routine.

The Stack Frame Pane displays all the function parameters, local variables,
and registers for the selected stack frame.

The information displayed in the Stack Trace and Stack Frame Panes
reflects the state of the process when it was last stopped. Consequently,
this information is not up-to-date while the thread is running.

The left margin of the Source Code Pane—called the tag field area—displays
line numbers. You can place a breakpoint at any source code line that
generated object code. (These places are indicated by a boxed line num-
ber.) The arrow in the tag field indicates the current location of the pro-
gram counter (PC) within the selected stack frame. See Figure 8.

Figure 8: Process Window Navigation Controls

In multiprocess and multithreaded programs, each thread has its own
point of execution. This means that each thread'’s Process Window has its
own unique program counter (PC). Therefore, when you stop a multipro-
cess or multithreaded program, the routine selected in the Stack Trace
Pane for a thread depends on the thread’s PC. When you stop the pro-
gram, some threads can be executing in one routine, while others might
be executing elsewhere.

The Action Points List Pane shows the list of breakpoints, evaluation points,
and watchpoints for the process.

The navigation control buttons in the upper right-hand corner of the Pro-
cess Window allow you to easily navigate through the processes and
threads being debugged.

Version 4.1

TotalView Basics

Sizing Process Window Panes

Sizing Process Window Panes

You can change the size of the panes in the Process Window. If you do not

want to see a pane, you can size the pane to a zero size. Here is how you
resize a pane:

1 Move the mouse cursor over the edge of the window pane until the
cursor with crossed arrows appears.

o

Figure 9: The Sizing Cursor

2 Hold the left mouse button down and drag the edge until the pane is
the size you want it to be.

Navigating in the Process Window

The navigation control buttons, located in the upper right corner of the Pro-
cess Window, allow you to easily navigate through processes and threads.
Using these buttons you can

B Move up and down the list of processes you are debugging.
®m Move up and down the list of threads in a process.
B Go back to the previous contents of the Process Window.

Figure 10 shows the navigation controls available in the Process Window.

o o 6

Go back
Previous process
Next process
Previous thread
Next thread

E-

RIEEIRS
T EaEE

0000 eQ

(4] (5]

Figure 10: Process Window Navigation Controls

Version 4.1 TotalView User's Guide 19

2 TotalView Basics
_ Scrolling Windows and Fields

Navigating in the Root Window

You can also navigate through processes and threads from the Root Window.
In general, selecting a process or thread with the left mouse button does not
open a new window. However, diving on a process or thread with the right
mouse button opens a new Process Window if an exactly matching pro-
cess/thread combination is not found. Finally, holding down the Shift key
when you dive always opens a new window.

NOTE Whenever a process or thread is replaced in the Process Window, the previous
contents of the window are pushed onto a stack. The Go Back button pops the stack
so that TotalView displays the previous contents of the Process Window.

Here is a summary of how you select and dive on threads and processes:

®m When you select a process in the Root Window, TotalView finds or opens a Pro-
cess Window for that process. If it cannot find a matching window, Total-
View replaces the contents of an existing Process Window and shows you
the selected process.

®m When you dive on a process in the Root Window, TotalView finds or opens a Pro-
cess Window for that process. Holding down the Shift key when you dive
tells TotalView to open a new Process Window focused on that process.

®m When you select a thread in the Root Window, TotalView finds or opens a Pro-
cess Window for that process and show you the selected thread. If a
matching window cannot be found, it will replace the contents of an
existing Process Window and show you the selected thread.

®m When you dive on a thread in the Root Window, TotalView finds or opens a Pro-
cess Window for that process and thread combination. Holding down the
Shift key when you dive will force TotalView to open a new Process Win-
dow focused on that thread.

Scrolling Windows and Fields

Scrolling Windows

You can use the scroll bars to scroll through the information in TotalView
windows and panes, as shown in Figure 11.

20 TotalView User’s Guide Version 4.1

TotalView Basics

Scrolling Windows and Fields

Up arrow

Page-up region
Elevator box
Page-down region
Down arrow

O000eQ

0
Figure 11: Scroll Bar

m To scroll one line at a time, click the Select (left) mouse button on the up
or down arrows (at the top and bottom of the scroll bar).

m To scroll one page at a time, click the Select mouse button above or
below the elevator box inside the scroll bar.

m To scroll an arbitrary amount, hold down the Select mouse button and
drag the elevator box inside the scroll bar.

To scroll continuously by line or by page, you can hold down the Select

mouse button instead of clicking it. If TotalView scrolls too fast or too slow,

you can adjust the scrolling speed using X resources. Refer to "TOTAL-

VIEW*SCROLLLINESPEED” on page 289 for further information.

You can also scroll windows using the keys on your keyboard's numeric key-
pad, as follows:

T Scrolls up one line.

{ Scrolls down one line.
Meta-T Scrolls up one page.
Page up Scrolls up one page.
Meta-1 Scrolls down one page.

Page down Scrolls down one page.

On some platforms, you may need to adjust your X Window System key-
board mapping to use some of the keys on your nume +ric keypad. Refer to
Appendix B, "Operating Systems” on page 329 for details.

Version 4.1 TotalView User's Guide 21

22

2 TotalView Basics
_ Scrolling Windows and Fields

Scrolling Multiline Fields

You can scroll multiline fields in dialog boxes. The bottom left corner of the
multiline field indicates your location in the field as follows:

All All lines are visible.

Top The top-most lines are visible, and more lines are below
the bottom of the field.

Bot The bottom-most lines are visible and more lines are above
the top of the field.

nn% The percentage of the lines above the top of the field that

are not visible is indicated.

The following figure shows an example of a scrollable multiline field.

Erwironment:

TSPLAY=unix:0
DITOR=emacs
7=100
FIEST=heelzebub
HELL=/binscsh
ERH=xtern
HISHOST=virnie
Z=l5/Eastern
SER=crock
IISPLAY=vinnie,dolphinics,coni,0
Chi=0
ch=gunb
18%

Figure 12: Scrollable Multiline Field

You can use the following keys to move within a multiline field:

Tor Ctrl-P Moves up a line.
dor Ctrlk-N Moves down a line.

Ctrl-U Multiplies one of the previous key commands by four. For
example, if you enter Ctrl-U Ctrl-P. the cursor moves up
four lines.

When you move off the top or bottom of the field, the field scrolls automat-
ically by one line.

TotalView User’s Guide Version 4.1

TotalView Basics

Diving into Objects

Version 4.1

Diving into Objects

To display more detail about an object (for example, a variable), place the
cursor over the object and dive into it by clicking the Dive mouse button
(which is usually the right button). You can dive into any object that has a
block of data associated with it, such as a pointer, structure, or subroutine.
TotalView displays the information about the object in the current window
or in a separate window, as described in Table 3.

TasLe 3: Uses for Diving

Dive on:
Process or thread

Routine in the Stack Trace Pane
Pointer
Variable

Array element, structure
element, or referenced memory
area

Subroutine

Information Displayed by Diving:

A Process Window appears focused on a
thread

The stack frame and source code for the
routine appear in the Process Window

The referenced memory area appears in a
separate Variable Window

The contents of the variable appear in a
separate Variable Window

The contents of the element or memory area
replaces the contents that was in the Vari-
able Window—this is known as a nested dive

The source code for the subroutine appears
in the Process Window

A subroutine must be compiled with source
line information (usually, with the —g option)
for you to dive into it and see source code; if
the subroutine was not compiled with source
line information, TotalView displays the as-
sembler code for the routine

For additional information about displaying variable contents, refer to “Div-
ing in Variable Windows” on page 147.

TotalView User's Guide

23

2 TotalView Basics

Editing Text

The TotalView field editor lets you change the values of fields in windows or
to change text fields in dialogs. To edit text:

1 Click the left mouse button to select the text you wish to change. If
you can edit the selected text, it appears within a rectangle, and you
will see an editing cursor (a black rectangle).

[T Stack. Frame NI

Function ".main"i H
argc: | R [|
argvy Q2 FF22220 o

Local wariables: i

Figure 13: Editing Cursor

2 Edit the text and press Return (for single-line fields) or Shift-Return
(for multiline fields).

You can copy and paste text within TotalView windows, between TotalView

windows, or between TotalView windows and other X Window System win-

dows.

The following steps explain how you copy and paste text between an edit-
able field in TotalView and other X Windows applications. Note that this pro-
cedure is unique to TotalView.

1 Copy text into the cut buffer with one of the following:

» Clicking and holding the left mouse button at one end of the range,
dragging the cursor to the other end of the range, then letting go of the
mouse button, or

» Clicking the left mouse button at one end of the range then right click-
ing the mouse button at the other end of the range

TotalView highlights the text while you hold the mouse button down.
When you release the mouse button, the highlight disappears indicating
TotalView copied the text into the cut buffer.

2 Move the cursor to where you want to paste the text, then either:
» Press Control middle mouse button, or

» Press the middle mouse button for a menu. Select Paste (Ctrl-V) from
the menu.

24 TotalView User’s Guide Version 4.1

Version 4.1

TotalView Basics

Editing Text

The following table describes the field editor commands. Many of these
commands perform the same operation in the Emacs text editor.

TaBLE 4: Field Editor Commands

Keystrokes
Ctrl-A

Ctr

Ctrl-H, Backspace,
or Delete

Ctrl-K

I-B
|-
-
Ctrl-
-
-

Ctrl-N

Ctrl-0
Ctrl-P

Ctrl-U [n]

Ctrl-v
Return

Shift-Return

Action

Moves the cursor to the beginning of the line
Moves the cursor backward one character
Aborts the field editor, and discard all changes
Deletes the character under the cursor

Moves the cursor to the end of the line

Moves the cursor forward one character
Deletes the previous character

Deletes all text to the end of the line, or deletes a
newline

Moves the cursor to the next line in a multiline
control

Inserts a newline in a multiline control

Moves the cursor to the previous line in a multiline
control

Multiplies the number of times a command is
executed by n; n is optional; the default is 4

Use this command in combination with another
command; for example, to move the cursor forward
50 characters, type Ctrl-U 50 Ctrl-F

Pastes text from the X Windows copy buffer

For single-line fields, stops the field editor and
deselects the field

In dialog boxes, confirms the dialog box as if you had
selected the OK, Continue, or Yes button

For multi-line fields, inserts a newline

For both single-line and multi-line fields, stops the
field editor and deselects the field

In dialog boxes, confirms the dialog box as if you had
selected the OK, Continue, or Yes button

TotalView User's Guide

25

2 TotalView Basics
_ Searching for Text

TaLE 4: Field Editor Commands (cont.)

Keystrokes Action

Tab Spaces over to the next tab stop—tab stops are
located every four characters

T e > Moves up, down, backward, and forward one
character

Searching for Text

You can search for text strings in most TotalView windows, as follows:

m Search for String

Searches forward in the window for a text string. The debugger prompts
you for the string. The search starts from the first line of text that is visible
in the window.

m Search Backward for String
Searches backward for a text string. The search starts from the last line of
text that is visible in the window.

m Reexecute Last Search
Repeats the last forward or backward search without prompting for a

string. The search starts from the point where the last search left off and
continues in the same direction.

Using the Spelling Corrector

TotalView can check the spelling of text entries for certain commands. If
TotalView does not find the name you entered, it displays a dialog box with
the closest match, as shown in Figure 14.

ouldn™t Find a baze type named "<{viod:",
he closest match was "<voids",

Boid

Figure 14: Spelling Corrector Dialog Box

26 TotalView User’s Guide Version 4.1

TotalView Basics

Saving the Contents of Windows

You can edit the closest match, and then select OK to use it, Original to get
back the original text, or Abort to cancel.

To customize the behavior of the spelling corrector with X Window System
resources, refer to “TOTALVIEW*SPELLCORRECTION” on page 291.

Saving the Contents of Windows

Version 4.1

You can save the contents of most window panes as ASCII text. You can:

m Write data to a file

When you specify filename, TotalView checks to see if the file exists. If it
exists, the debugger overwrites the file’s contents. If it does not exist,
TotalView creates the file, then writes the information to it.

m Append data to a file
When you specify +filename, TotalView checks to see if the file exists. If it

exists, TotalView appends information to the end of the file. If it does not
exist, TotalView creates the file, then writes the information to it.

m Pipe data to UNIX shell commands
When you specify | command, TotalView pipes the commands to /bin/sh for
execution. You can use a series of shell commands if desired. For exam-
ple, here is a command that ignores the top five lines of output, com-

pares the current ASCII text to an existing file, and writes the differences
to another file:

| tail +5 | diff - filename > filename.diff
Here is the procedure for saving the contents of the current window pane:

1 Move the mouse pointer into the desired pane and select the Save
Window to File command from the menu.

2 Enter filename, +filename, or | command in the dialog box and then select
OK.

To save a series of panes in a window, you can use the Reexecute Last Save

Window command. This command repeats the last Save Window to File

command (including the information entered in the dialog box).

TotalView User's Guide

27

2 TotalView Basics
_ Exiting from TotalView

Exiting from TotalView

You can exit from TotalView either by pressing Ctrl-Q in a window or by
selecting the Quit Debugger command in the Root Window.

After entering one of these commands, TotalView displays a dialog. Select

Yes or type y to confirm. If you do not want to exit, select No or type n. As
TotalView exits, it kills all programs and processes that it started. However,
programs and processes used while you were debugging your program and
which it did not start continue to execute.

28 TotalView User’s Guide Version 4.1

Chapter 3

Setting Up a Debugging Session

This chapter explains how to set up basic TotalView sessions. It also describes
some common commands and procedures. For information on setting up remote
debugging sessions, see Chapter 4, “Setting Up Remote Debugging Sessions" on
page 51. For information on setting up parallel debugging sessions, see Chapter
5, "Setting Up Parallel Debugging Sessions” on page 69.

In this chapter, you will learn how to:

® Compile programs

m Start TotalView

Load executables

Attach to and detach from processes

Examine core files

Determine the status of processes and threads
Handle signals

Set search paths

Set command arguments and environment variables
Set input and output files

Monitor your TotalView session

Compiling Programs
Before you start to debug a program, you must compile the program with
the appropriate options and libraries for your situation. Table 5 presents
some general considerations, but you must check Appendix A, “Compilers
and Environments,” on page 319 to determine the exact syntax and any other
considerations for your platform. For additional information on how to

Version 4.1 TotalView User's Guide 29

3 Setting Up a Debugging Session
_ Starting the TotalView Debugger

compile a Portland Group HPF program for debugging, see “Compiling HPF for
Debugging” on page 109.
TasLe 5: Compiler Considerations

Compiler Option or

Library What It Does When to Use It
Debugging symbols option Generates debugging Before debugging any
(usually —g) information in the symbol program with TotalView
table
Optimization option Moves code to optimize After you finish debug-
(usually —0) execution of program ging your program with
TotalView

Some compilers do not
let you use the —O option
with the —g option

Even if you can, we rec-
ommend against it be-
cause using the -0 op-
tion when debugging your
program can produce
strange results

Multiprocess programming Uses special versions of Before debugging a

library (usually dbfork) the fork() and execve() multiprocess program
system calls that explicitly calls
Using dbfork is discussed fork() or execve()

in "Linking with the dbfork Refer to “Processes That

Library” on page 324 Call fork()" on page 205
and “Processes That Call
execve()” on page 205

Starting the TotalView Debugger

The command syntax for starting TotalView is:
totalview [executable | corefile | | [options |

where executable specifies the name of the executable file to be debugged
and corefile specifies the name of the core file to be debugged.

30 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Starting the TotalView Debugger

NOTE If you are starting the CLI, you will type “totalviewcli” rather than “totalview".

Here are some of the common ways to start TotalView:

totalview Starts TotalView without loading a program or core file.
After TotalView starts, you can load a program by using
the New Program Window command from the Root
Window.

totalview executable
Starts TotalView and loads the executable program.

totalview executable corefile
Starts TotalView and loads the executable program and
the corefile core file.

totalview executable —a args
Starts TotalView and passes all subsequent arguments
(specified by args) to the executable program. If you use
the —a option, it must appear after all other TotalView
options on the command line.

totalview executable —grab
Starts TotalView and grabs the keyboard whenever it
displays a dialog box. You should use this option when-
ever you start TotalView with a window manager that
uses a “click-to-type” model.

totalview executable —remote hostname[:portnumber]
Starts TotalView on the local host and the TotalView
Debugger Server (tvdsvr) on the remote host fiostname.
Loads the program specified by executable for remote
debugging. You can specify a host name or TCP/IP
address for hostname, and optionally, a TCP/IP port
number for portnumber.

For more information on:
B Debugging parallel programs such as MPI, PVM, or HPF, refer to Chapter 5,
"Setting Up Parallel Debugging Sessions” on page 69.

B The totalview command, refer to Chapter 12, “TotalView Command Syntax”
on page 299.

m Remote debugging, refer to "Debugging Remote Processes” on page 51, “Start-
ing the Debugger Server for Remote Debugging” on page 55, and Chapter 13,
“TotalView Debugger Server Command Syntax” on page 311.

TotalView User's Guide 31

Setting Up a Debugging Session

Loading Executables

Loading Executables

32

Loading a New Executable

If you did not load an executable when starting TotalView, you can load one
using the New Program Window command as follows:

1 From the Root Window, select the New Program Window command.

The following dialog box appears.

Executable file names
Filterf

@ Find or create a process window
3 Create a new process window

Attach to existing process or core file {or blank if nonei:

@ Attach to an existing process {(Enter PID}
3 Core file (Enter core file name}

Program location (or blank if locall:

@ Remote host {Enter remote host name or IP address)
3 Serial line {Enter device name}

FIGURE 15: New Program Window Dialog Box

2 Enter the name of the executable in the Executable file name field. You

can use a full or relative pathname.

If you enter a simple filename, TotalView searches for it in the list of direc-
tories specified with the Set Search Directory command or named in your

PATH environment variable.

3 To create a new process instead of reusing an existing one, select the
Create a new process window button. Afterwards, TotalView adds an

4

entry in the Root Window for the process.
Select OK.

If you use the New Program Window command to reload the current exe-
cutable, TotalView does not reread the executable; instead, it reuses the

TotalView User’s Guide

Version 4.1

Setting Up a Debugging Session

Attaching to Processes

existing symbol table. To have TotalView reread the executable, you need to
use the Reload Executable File command, as described in the next section.

Reloading a Recompiled Executable

If you edit and recompile your program during a debugging session, you can
reload the updated program without exiting from TotalView, as follows:

1 Confirm that all processes using the executable have exited. If they
have not, display the Arguments/Create/Signal menu and select the
Delete Program command from the Process Window.

2 Confirm that duplicate copies of the process do not exist by entering
the ps shell command. If duplicate processes exist, delete them with
the kill command.

3 Recompile your program.

4 In the Process Window, display the Arguments/Create/Signal menu
and select the Reload Executable File command. TotalView updates
the Process Window with the new source file and loads the new exe-
cutable file.

The next time you start this process, TotalView uses the new executable
file.

Attaching to Processes

Version 4.1

If a program you are testing is hung or looping (or misbehaving in some
other way), you can attach to it with TotalView. You can attach to single pro-
cesses, multiprocess programs, and remote processes.

To attach to a process, you can either use the Show All Unattached Pro-
cesses or New Program Window commands.

If the process or any of its children calls the execve() routine, you may need
to attach to it by creating a new program window. This is because TotalView
uses the ps command on some platforms to obtain the name of the process
executable. Since ps can give incorrect names, TotalView may not find it.

NOTE When you exit from TotalView, it kills all programs and processes that it

started. However, programs and processes used while you were debugging your pro-
gram and which it did not start continue to execute.

TotalView User's Guide

33

3 Setting Up a Debugging Session
_ Attaching to Processes

Attaching Using Show All Unattached Processes

To attach to a process using the Show All Unattached Processes command,
go to the Root Window and complete the following steps:

1 Select the Show All Unattached Processes command.

The Processes that TotalView doesn’t own Window appears, as shown
in Figure 16. This window lists the process ID, status, and name of each
process associated with your username. The processes that appear
dimmed are those that are being debugged or those that TotalView will
not allow you to debug (for example, the TotalView process itself).

BT Processes that TotalView doesn’t own 7SS
i

Localt b processes, 4 attachable

1EEF4 R ps
18780 B rsh
20510 F flipper
21442 | emacs

bimma,dolphinics,comy 4 processes, 4 attachable

2ER9E R txsort_t
28040 F tudswr
27898 F ps

28248 R rzhd @

FIGURE 16: Processes that TotalView doesn’t own Window

The processes at the top of this figure are all local. The remaining pro-
cesses are remote.

If you are debugging a remote process, this window also shows processes
running under your username on each remote host name. You can attach
to any of these remote processes. For more information on remote
debugging, refer to “Starting the Debugger Server for Remote Debugging” on
page 55 and Chapter 13, “TotalView Debugger Server Command Syntax” on
page 311.

2 Dive into the process you wish to debug.

A Process Window appears. The right arrow points to the current program
counter (PC), which indicates where the program is executing or where it
is hung.

34 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Attaching to Processes

Attaching Using the New Program Window

To attach to a process by using the New Program Window command, fol-
low these steps:

1 Use the ps shell command to obtain the process ID (PID) of the pro-
cess.

2 [ssue the New Program Window command from the Root Window.
TotalView displays the following figure.

Executable file names

Filter

@ Find or create a process window
{3 Create a new process window

Attach to existing process or core file {or blank if nonei:

L2478

@ Attach to an existing process (Enter PID}
O Core file {(Enter core file name}

Program location for blank if locall:

@ Remote host (Enter remote hast name or IP address}
3 Serial line (Enter device name}

FIGURE 17: New Program Window Dialog Box

Enter a file name in the Executable field name field. This name can be a
full or relative pathname. If you supply a simple filename, TotalView
searches for it in the directories specified with the Set Search Directory
command and specified by your PATH environment variable.

Enter the process ID (PID) of the unattached process in the middle section
of the dialog box.

3 Select OK.
If the executable is a multiprocess program, TotalView asks if you want to

attach to all relatives of the process. To examine all processes, select Yes.

If the process has children that called execve(), TotalView tries to deter-
mine the correct executable for each of them. If TotalView cannot deter-

TotalView User's Guide

35

3 Setting Up a Debugging Session
_ Detaching from Processes

mine the executables for the children, you need to delete (kill) the parent
process and start it again using TotalView.

Finally, a Process Window appears. The right arrow points to the current
program counter (PC), which is where the program is executing or where
it is hung.

Detaching from Processes

You can detach from processes that TotalView did not create when you fin-
ish debugging them using the following procedure:

1 If you want to send the process a signal, select the Set Continuation
Signal command. Choose the signal that TotalView should send to the
process when it detaches from the process. For example, to detach
from a process and leave it stopped, set the continuation signal to
SIGSTOP.

2 Display the Arguments/Create/Signal menu and select the Detach
from Process command.

When you detach from a process, TotalView removes all breakpoints that
were set within it.

Examining a Core File

If a process encounters a serious error and dumps a core file, you can exam-
ine it using one of the following methods:

m Start TotalView as follows:
totalview filename corefile [options |

m Enter the New Program Window command from the Root Window. In the
middle section of the dialog box, enter the name of the core file, select
the Core file radio button, and then select OK.

NOTE You can only debug local core files.

The Process Window displays the core file, with the Stack Trace, Stack
Frame, and Source Code Panes showing the state of the process when it
dumped core. The title bar of the Process Window names the signal that

TotalView User’s Guide Version 4.1

Setting Up a Debugging Session

Determining the Status of Processes and Threads

caused the core dump. The right arrow in the tag field of the Source Code
Pane indicates the value of the program counter (PC) when the process en-
countered the error.

You can examine the state of all variables at the time the error occurred.
Chapter 7, "Examining and Changing Data” on page 143 contains more infor-
mation.

If you start a process while you are examining a core file, TotalView stops us-
ing the core file and starts a fresh process with the executable.

Determining the Status of Processes and Threads

Version 4.1

Process and thread states are displayed in:

B The Root Window, for processes and threads.

B The Unattached Processes Window, for processes.

B The process and thread status bars of the Process Window.
m The Thread List Pane of the Process Window, for threads.

Process Status

The status of a process includes three elements: the process location, the
process ID, and the state of the process. The Root Window displays a single
character to identify the state of a process. (These characters are explained
in "Attached Process States” on page 40.) The process status in the Root Window
has the following form:

[L]1N S process name

where:
L The process location (present only for remote processes)
N The process ID
S The single-character representation of the process state

process_name TotalView's name for the process

The Unattached Process Window lists all processes associated with your
username. The information in this window is similar to the information in the

TotalView User's Guide 37

3 Setting Up a Debugging Session
_ Determining the Status of Processes and Threads

Root Window; process states are specified with a single character. Processes
being debugged are dimmed out.

The process status bar of the Process Window displays information in the
following format:

Process [L | N: process_name (state)

where:
L The process location (remote processes only)
N The process ID
process_name TotalView's name for the process
state The state name of the process based on the state of its
threads

Thread Status

The Root Window displays a single character that identifies the state of a
thread. (These characters are explained in ‘Attached Process States” on page
40.) The thread status in the Root Window has the following form:

T/ X S in routine_name

where:
T The TotalView assigned thread ID
X The system assigned thread ID
S The single-character representation of the thread’s state

routine_name The name of the routine in which the thread was executing
when last stopped by TotalView

Figure 18 shows process and thread status.

If, as they are on some systems, the TotalView-assigned thread ID and the
system-assigned thread ID are the same, TotalView displays only one ID
value.

The Thread List Pane in the Process Window uses the same thread status
format as the Root Window.

38 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Determining the Status of Processes and Threads

I J1

WHIK Tatalfiew 3%[5,0-3 B2 S S E

97542 Tl /. /txsort_t {F threads) i
1720419 K at (00000
2/31173 K at. 0000000
o—| 3/3629 K at Os000000

4/34201 b1 in ,forksort
hA19EEE T in ,_pthread_body
Ef’lE!EIi? T in ,_pthread_body

I [rareen-1%1 0408 3 SLxzort_t {2 threads!

[\

Collapse/expand toggle
Process ID (pid)

Thread status

Program name

Thread list

Remote process location
Thread ID (tid/systid)
Process status

Action point ID number

0000e
(el

FIGURE 18: Root Window Showing Process and Thread Status

The thread status bar of the Process Window displays information in the fol-
lowing format:

Thread N.T: process_name (state) reason

where
N The process ID
T The TotalView assigned thread ID
process_name The TotalView’s name for the process
state The state name of the thread
reason The reason the thread stopped

Unattached Process States

The state information for a process displayed in the Unattached Processes
Window is derived from the system. The state characters TotalView uses to
summarize the state of an unattached process do not necessarily match
those used by the system.

TotalView User's Guide

39

40

3 Setting Up a Debugging Session
_ Determining the Status of Processes and Threads

Table 6 summarizes the possible states in the Unattached Processes Win-
dow.

TaBLE 6: Summary of Unattached Process States

State

State Character Meaning for a process

Running R Process is running or can run

Stopped T Process is stopped

Idle I Process has been idle or sleeping for more than
20 seconds

Sleeping S Process has been idle or sleeping for less than
20 seconds

Zombie Z Process is a “zombie”; that is, a child process

that has terminated and is waiting for its parent
process to gather its status

Attached Process States

The state of processes and threads that TotalView is attached to is displayed
in various windows.

Table 7 summarizes the possible states for an attached process or thread,
and how these states are displayed.
TasLE 7: Summary of Attached Process and Thread States

State

State Name Character ~ Meaning for a thread and process

At breakpoint B Thread: stopped at a breakpoint
Process: one or more threads are stopped
at a breakpoint

Error reason E Thread: is stopped because of error reason
Process: one or more threads are in the
Error state

In kernel K Thread only: the thread is executing inside
the kernel (that is, it made a system call);
when a thread is in the kernel, the oper-
ating system does not allow TotalView to
view the full state of the thread

TotalView User’s Guide Version 4.1

Setting Up a Debugging Session

Handling Signals

TaBLE 7: Summary of Attached Process and Thread States (cont.)

State

State Name Character ~ Meaning for a thread and process

Running R Thread: is running or can run
Process: all threads in the process are run-
ning or can run

Exited or never Blank Process only: does not exist

created

Mixed M Process only: some threads in the process
are running and some are not running or
the process is expecting some of its
threads to stop

Stopped reason T Thread: stopped because of reason, but
not at a breakpoint and not because of
an error
Process: one or more threads are stopped,
but none are in the At Breakpoint state

At watchpoint W Thread: stopped at a watchpoint

Process: one or more threads are stopped
at a watch point

The Error state usually indicates that your program received a fatal signal
from the operating system. Signals such as SIGSEGV, SIGBUS, and SIGFPE
can indicate an error in your program. The next section shows the procedure
for controlling how TotalView handles signals that your program receives.

Handling Signals

Version 4.1

If your program contains a signal handler routine, you may need to adjust
the way TotalView handles signals. You can do this by using:

m A dialog box (described in this section)
B An X resource (see "TOTALVIEW*SIGNALHANDLINGMODE” on page 290)

B A command-line option to the totalview command (refer to “"TOTALVIEW
COMMAND SYNTAX” on page 299)

TotalView User's Guide

41

3 Setting Up a Debugging Session
_ Handling Signals

Unless you tell it otherwise, here is how TotalView handles UNIX signals:

TasLe 8: Default Signal Handling Behavior
Signals that are Passed Back Signals that Stop Your Program

to Your Program or Cause an Error
SIGHUP SIGILL
SIGINT SIGTRAP
SIGQUIT SIGIOT
SIGKILL SIGEMT
SIGALRM SIGFPE
SIGURG SIGBUS
SIGCONT SIGSEGV
SIGCHLD SIGSYS
SIGIO SIGPIPE
SIGVTALRM SIGTERM
SIGPROF SIGTSTP
SIGWINCH SIGTTIN
SIGLOST SIGTTOU
SIGUSRI SIGXCPU
SIGUSR2 SIGXFSZ

TotalView uses the SIGTRAP and SIGSTOP signals internally. If the process
encounters either signal, TotalView neither stops the process with an error
nor passes the signal back to your program. Further, you cannot alter the
way TotalView uses these signals.

On some systems, hardware registers can affect how signals such as SIGFPE
are handled. For more information, refer to “Interpreting Status and Control Reg-
isters” on page 122 and Appendix C, "Architectures,” on page 343.

NOTE On SGI machines, setting the TRAP_FPE environment variable to any value
indicates that your program will trap underflow errors. If you set this variable, how-
ever, you will also need to use this dialog box to tell TotalView what it should do with
SIGFPE errors. (In most cases, you will set SIGFPE to Resend.) As alternatives, you can
set the -signalHandlingMode option (see page 309) or the totalview*signalHandling-
Mode X resource (see page 290) to “Resend=SIGFPE".

42 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Handling Signals

You can change the signal handling mode by going to the Process Window
and display the Arguments/Create/Signal menu. You then select the Set
Signal Handling Mode... command. The dialog box shown in Figure 19 ap-
pears.

B Stop related processes on error
B Open {or raize! process window on error
[Open {or raise! process window at breakpoint

Error Stop Resend Discard

o o] & SIGHUP {1} Hangup
o o] 3 SIGINT {23 Interrupt
o o - O SIGOUIT (3 Quit
®]] O SIGILL (4} Illegal instruction {rot reset when caughtl}
] o o {3 SIGRERT {6} Abort process
- o o O SIGEMT {73 EMT instruction
] o o {3 SIGFPE {8} Floating point exception
o o] & SIGRILL {93 Kill {cannot be caught or ignored?
- o o O SIGBUS {10} Bus error
] o o O SIGSEGY {11} Segmentation violation
] o o & SIGSYS {12} Bad argument to system call
] o o {3 SIGPIPE {12} Write on a pipe with no one to read it
] o o {3 SIGTERM {15} Software termination zignal from kill
8] 8] ® 3 SIGURG {16} Urgent condition on I0 channel
E 0K j EDeFaultsj E Abort j

FIGURE 19: Set Handling Mode Command Dialog Box

NOTE The signal names and numbers shown in the dialog box are platform-specific.

When your program encounters an error signal, TotalView stops all related
processes. If you do not want this behavior, deselect the Stop related
processes on error checkbox.

Also by default, when your program encounters an error signal, TotalView
opens or raises the Process Window. Deselecting the Open (or raise)
Process window on error checkbox tells TotalView that it shouldn’t open or
raise the window. You can change the default setting of this checkbox using
an X resource ("TOTALVIEW* POPONERROR” on page 287) or a command line
option.

If a processes in a multiprocess program encounter an error, TotalView only
opens a Process Window for the first process that encounters an error. This
feature prevents the screen from filling up with process windows.

If you select the Open (or raise) process window at breakpoint checkbox,
TotalView opens or raises the Process Window when your program reaches a

TotalView User's Guide 43

3 Setting Up a Debugging Session
_ Setting Search Paths

breakpoint. You can make this behavior your default by using an X Resource
(“TOTALVIEW* POPATBREAKPOINT” on page 287) or a command line option.

If necessary, scroll the signal list to the signal being changed. Make your
changes by selecting one of the following radio buttons:

Error Stops the process, places it in the error state, and dis-
plays an error in the title bar of the Process Window:. If
the Stop related processes on error checkbox is
selected, TotalView also stops all related processes.
You should select this signal handling mode for severe
error conditions such as SIGSEGV and SIGBUS signals.

Stop Stops the process and places it in the stopped state.
Select this signal handling mode if you want TotalView
to handle this signal the same as a SIGSTOP signal.

Resend Sends the signal to the process. If your program con-
tains a signal handling routine, you should use this
mode for all the signals that it handles. By default, the
common signals for terminating a process (SIGKILL
and SIGHUP) use this mode.

Discard Discards the signal and restarts the process without a
signal.

NOTE Do not use Discard mode for fatal signals, such as SIGSEGV and SIGBUS. If
you do, TotalView can get caught in a signal/resignal loop with your program; the sig-
nal will immediately recur because the failing instruction will reexcute repeatedly.

Setting Search Paths

If your source code, executable, or object files reside in different directories,
set search paths for these directories with the Set Search Directory com-
mand. TotalView searches the following directories (in order):

1 The current working directory (.).

2 The directories you specify with the Set Search Directory command in
the exact order you enter them in the dialog box.

3 If you specified a full pathname for the executable when you started
TotalView, TotalView searches this directory.

4 The directories specified in your PATH environment variable.

44 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Setting Search Paths

These search paths apply to all processes that you are debugging.

To use the Set Search Directory command, go to the Process Window and
complete these steps:

1 Display the Display/Directory/Edit menu and select the Set Search
Directory... command. The following dialog box appears.

Directories to searchi

HHOHE

L. AEr

L ./ 11b/$ARCH
home/project/uidare

T ALl

FIGURE 20: Set Search Directory Dialog Box

2 Enter the directories in the order you want them searched, separating
each directory with a space. You can also enter them on separate
lines.

The current working directory (.) is the first directory listed in the window.
You can move the current working directory further down the list. If you
remove it, TotalView reinserts it at the top of the list. Relative pathnames
are interpreted as being relative to the current working directory.

3 Select OK.

Once you change the list of directories with the Set Search Directory com-
mand, TotalView again searches for the source file that is currently displayed
in the Process Window.

You can also specify search directories using an X Window System resource.
Refer to "TOTALVIEW* SEARCHPATH” on page 289.

TotalView User's Guide

45

3 Setting Up a Debugging Session
_ Setting Command Arguments

Setting Command Arguments

@ ®E E E E E FE E N E N N R EE R ER R EER E R R FE R R RN R EE NN R EEEEGHE
When TotalView creates a process, it passes the name of the file containing
the executable code for the process to the program. If your program re-

quires command line arguments, you must set these arguments before you
start the process, as follows:

1 Display the Arguments/Create/Signal menu and select the Set Com-
mand Arguments... command. The following dialog box appears:

Command-line argumentsz:

i)

]

larg3 argd

"thiz will be one argument, argh"

T ALl

FIGURE 21: Set Command Arguments Dialog Box

2 Enter the arguments to be passed to the program. Separate each
argument with a space, or place each argument on a separate line. If
an argument has spaces in it, enclose the whole argument in double
quotes. When you are done, select OK.

You can also set command-line arguments with the —a option of the

totalview command, as discussed in “Starting the TotalView Debugger” on page

30.

Setting Environment Variables

You can set and edit the environment variables that TotalView passes to pro-
cesses. When TotalView creates a new process, it passes a list of environ-
ment variables to the process. By default, a new process inherits TotalView's

46 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Setting Environment Variables

environment variables, and a remote process inherits tvdsvr’s environment
variables.

If the Environment Variable dialog is empty, the process inherits its environ-
ment variables from TotalView or tvdsvr.

NOTE If you add environment variables, the process no longer inherits environment
variables; it only receives the variables that you enter in this dialog box. Therefore, if
you want to add additional variables to those inherited that would be inherited, you
must enter the variables being inherited in addition to the ones you are adding.

An environment variable is specified as name=value. For example, the follow-
ing definition creates an environment variable named DISPLAY whose value
is unix:0.0:

DISPLAY =unix:0.0

To add, delete, or modify environment variables, go to the Process Window
and display the Arguments/Create/Signal menu and select the Set Environ-
ment Variables command. In the displayed dialog box, place each environ-
ment variable on a separate line. TotalView ignores blank lines. Figure 22
shows an example:

Ervironment.:

ISPLAY=unix10

DITOR=emacs

Z=100)

PIEST=abibabikela

HELL=/bin/csh

ERM=xterm

HISHOST=vinnie

Z£=U5/Eastern

SER=beauregard

DISPLAY=vinnie,dolphinics,coms0,0

IN=0)

rch=ALXH
All

FIGURE 22: Environment Variables Dialog Box

The actions you can now perform are:

B To change the name or value of an environment variable, edit the line.

® To add a new environment variable, insert a new line and specify the
name and value.

TotalView User's Guide

47

3 Setting Up a Debugging Session
_ Setting Input and Output Files

B To delete an environment variable, delete the line. If you delete all the
lines, the process inherits TotalView or tvdsvr’s environment.

Setting Input and Output Files

Before TotalView begins executing a program, it determines how it will han-
dle standard input (stdin) and standard output (stdout). Unless you tell it
otherwise, stdin and stdout use the shell window from which TotalView was
invoked.

You can redirect stdin or stdout to a file by completing these steps from the
Process Window before you start executing your program:

1 Display the Arguments/Create/Signal menu and select either Input
from File... or Output to File... . The following dialog box appears.

Redirect standard input (ztdin} from filename:

FIGURE 23: Input from File Dialog Box

2 Enter the name of the file, relative to your current working directory.
3 Select OK.

Monitoring TotalView Sessions

TotalView logs all significant events occurring for all processes being de-
bugged. To view the event log, go to the Root Window and select the Show
Event Log Window command. The TotalView Event Log Window displays a
sequential list of events. For example:

48 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up a Debugging Session

Monitoring TotalView Sessions

% TotalView Event Log BT S smser s

Thread 0,1 has appeared
Process O haz exited
Thread 0,1 haz appeared
Process 0 has exited
Created process 18858, named "txsort_t"

Thread 18858,1 has appeared

Thread 18853,2 has appeared

Thread 18853.2 hit a breskpoint at line 293 in ",forksort”

[

<l

FIGURE 24: Event Log Window

TotalView User's Guide

49

3 Setting Up a Debugging Session
_ Monitoring TotalView Sessions

50 TotalView User’s Guide Version 4.1

Chapter 4

Settingup IIIIIIIIIIIIIIIIE
Remote Debugging Sessions .

This chapter explains how to set up TotalView remote debugging sessions. In this
chapter, you will learn how to:

B Debug remote processes
B Connect to remote machines
B Start the debugger server for remote debugging

B Launching programs using a large number of computers (bulk server
launch)

B Debug over a serial line

Debugging Remote Processes

You can begin debugging remote processes either by loading a remote exe-
cutable or by attaching to a remote process.

NOTE You cannot examine core files on remote nodes.

Loading a Remote Executable

Here is the procedure for loading a remote program into TotalView:

1 Select the New Program Window command (see “Loading a New Exe-
cutable” on page 32 for more information) and then enter the execut-
able’s file name and select the Create a new process window button.

2 Enter the host name or TCP/IP address of the machine on which the
executable should be running in the Program location field, as shown
in Figure 25.

Version 4.1 TotalView User's Guide 51

Setting Up Remote Debugging Sessions
m Debugging Remote Processes

Executable file names

Filter

@ Find or create a process window
{3 Create a new process window

Attach to existing process or core file {or blank if nonei:

@ Attach to an existing process (Enter PID}
O Core file {(Enter core file name}

Program location for blank if locall:

fulean,dalphinics, conll

@ Remote host (Enter remote hast name or IP address}
3 Serial line (Enter device name}

FIGURE 25: New Program Window Dialog Box

On some multiprocessor platforms, TotalView displays additional radio
buttons in the lower section of the dialog box. You can use these buttons
for debugging programs that are running on groups or clusters of proces-
sors.

3 Select OK.

If this method does not work, you may need to disable the auto-launch fea-
ture for this connection and start the TotalView Debugger Server (tvdsvr)
manually. Then, you can specify hostname:portnumber in step 2, where port-
number is the TCP/IP port number on which the debugger server is commu-
nicating with TotalView. For more information on this alternative, refer to
“Starting the Debugger Server for Remote Debugging” on page 55.

Attaching to a Remote Process

You attach to a remote process using the same dialog boxes you use when
you attach to a local process. You will, however, enter information in differ-
ent fields. You can also attach to a remote process by bringing up the asso-
ciated windows, then diving into processes from them.

Here is how you attach to a remote process:

52 TotalView User’s Guide Version 4.1

Setting Up Remote Debugging Sessions

Connecting to Remote Machines

1 After using the ps shell command to obtain the process ID, display
the New Program Window:. (See “Attaching Using the New Program Win-
dow” on page 35 for more information.)

2 Enter a file name in the Executable field name field and the process ID
in the Attach to ... field.

3 Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box.

On some multiprocessor platforms, TotalView displays additional radio
buttons in the lower section of the dialog box. You can use these buttons
for debugging programs that are running on groups or clusters of proces-
sors.

4 Select OK.

If this method does not work, you may need to disable the auto-launch fea-
ture for this connection and manually start the debugger server. You can
now specify hostname:portnumber in step 2 where portnumber is the TCP/IP port
number on which tvdsvr is communicating with TotalView. For more infor-
mation on this alternative, refer to “Starting the Debugger Server for Remote
Debugging” on page 55.

You can also attach to a remote process by first connecting to a remote host
using the New Program Window command and then bringing up a list of
unattached processes with the Show All Unattached Processes command.
You can attach to these processes by diving into them.

1 Connect to the remote host. For details, see “Connecting to Remote
Machines” on page 53.

2 After connecting to the remote host, bring up a list of unattached
processes. You can attach to these processes by diving into them. For
details, see "Attaching Using Show All Unattached Processes” on page 34.

Connecting to Remote Machines

Version 4.1

You can connect to a remote machine in two ways: with the -remote option
on the command line when you start TotalView or with the New Program
Window command from the Root Window after you start TotalView.

TotalView User's Guide

53

54

Setting Up Remote Debugging Sessions
m Connecting to Remote Machines

NOTE

If TotalView supports a parallel process runtime library (for example, MPI,
PVM, or HPF), it automatically connects to remote hosts. For more information, see
Chapter 5 "Setting Up Parallel Debugging Sessions" on page 69.

For details on the syntax for the —-remote command-line option, see "Start-

ing the TotalView Debugger” on page 30.

To connect to a remote host from a TotalView session, follow these steps:

1 Issue the New Program Window command from the Root Window. A

dialog box appears, as shown in the following figure.

Executable file name:

@ Find or create a process window
{3 Create a new process window

Attach to existing process or core file {or blank if nonel:

@ Attach to an existing process {(Enter PID}
(2 Core file (Enter core file name}

Program location {or blank if locall:

pinniell

@ Renote host {(Enter remate host name or IP address)
3 Serial line {Enter device name}

FIGURE 26: Remote Host Connection

2 Delete the text from the Executable file name and Attach to existing

process or core file fields.

3 Enter the host name or TCP/IP address of the machine on which the
executable will be running in the bottom section of the dialog box.

On some multiprocessor platforms, TotalView displays additional radio
buttons in the lower section of the dialog box. These buttons let you

debug programs running on groups or clusters of processors.

4 Select OK.

TotalView User’s Guide

Version 4.1

Setting Up Remote Debugging Sessions

Starting the Debugger Server for Remote Debugging

Starting the Debugger Server for Remote Debugging

Version 4.1

Debugging a remote process with TotalView only differs from debugging a
native process in that:

B TotalView works with another TotalView process running on the remote
machine to debug the remote process. This process is called the Total-
View Debugger Server (tvdsvr)

B The performance of your session depends on the performance of the net-
work between the native and remote machines. If the network is over-
loaded, debugging can be slow.

Unless you tell it otherwise, TotalView automatically launches tvdsvr. It can
be launched in two ways. The first method launches a tvdsvr on each re-
mote host independently. The second method, called bulk server launch,
launches all remote processes at the same time. Auto-launching greatly
simplifies the debugging remote processes since you do not need to take
any action to debug remote processes.

Single Process Server Launch Options

The Server Launch Window dialog box lets you change the server launch
command, disable auto-launch, and alter the connection timeout used by
TotalView when it launches tvdsvr.

The popup menu in the Root Window contains the Server Launch Window
command. After selecting this command, TotalView displays the following
dialog box:

B4 TotalView Debugger Server Auto Launch Enabled

Server launch command:

ﬂ:XR -n_"twvdsvr —working_directory #0 -callback ZL —set_pw #F -werbosity #V" |

Connection timeout {in seconds):

B 1

ook £ Tefaults § b obort §

FIGURE 27: Server Launch Window

TotalView User's Guide

55

Setting Up Remote Debugging Sessions
m Starting the Debugger Server for Remote Debugging

TotalView Debugger Server Auto Launch Enabled
If the checkbox is selected, TotalView will auto-launch
the TotalView Debugger Server (tvdsvr).

Server launch command
If auto-launch is enabled, TotalView will use this com-
mand to launch tvdsvr. For information on this com-
mand and its options, see "Single Process Server Launch
Command” on page 59.

Connection timeout
After TotalView automatically launches tvdsvr, it waits
30 seconds for tvdsvr to respond with a successful
connection message. If the connection is not made in
this time, TotalView times out. You can enter a value
from 1 to 3600 seconds (1 hour).

In addition, you can preset the timeout value using an
X resource. See "TOTALVIEW* SERVERLAUNCHTIMEOUT”
on page 290 for more information.

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started the
debugger) before the timeout expires, pressing Ctrl-C
in any TotalView window aborts the launch request.

If you make a mistake or decide you want to go back to TotalView's default
settings, select the Defaults button. This command also overrides changes
you made using an X resource. TotalView does not immediately change set-
tings after you press the Defaults button; instead, it waits until you select
the OK button.

Bulk Launch Window Options

The Bulk Launch Window dialog box lets you change the bulk launch com-
mand, disable bulk launch, and alter connection timeouts used by TotalView
when it launches the tvdsvr programs.

The Root Window's popup menu contains the Bulk Launch Window com-
mand. After selecting this command on an SGI MIPS machine, TotalView dis-
plays the dialog box shown in Figure 28:

If you are running on an RS/6000 AIX machine, the defaults are different.

56 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Remote Debugging Sessions

Starting the Debugger Server for Remote Debugging

[TotalView Debugger Serwver Bulk Launch Enabled

Bulk launch command:

1
BFfay tvdswr -working_directory %0 -callback_host #H -callback_ports 2L -set_pus

Temp file 1 prototype:

Header: | |

Host Lines: |]

Trailer: | |

Temp file 2 prototype:

Header: | |

Host Lines: |]

Trailer: | |

Connection timeout {in seconds):

Baze: B0 | plus (per serverd; [0 |

E 0K] EDeFaults] E Abort]

FIGURE 28: Bulk Launch Window

TotalView Debugger Server Bulk Launch Enabled
If the checkbox is selected, TotalView will bulk launch

the TotalView Debugger Server (tvdsvr). By default,
bulk launch is disabled.

Bulk launch command
If bulk launch is enabled, TotalView will use this com-

mand to launch tvdsvr. For information on this com-
mand and its options, see "Bulk Server Launch on an
SGI MIPs Machine” on page 61 and “Bulk Server Launch
on an IBM RS/6000 AIX Machine” on page 62.

Temp file prototypes
These fields can be used to create temporary files in

bulk launch operations. For information on these
fields, see Chapter 13 “TotalView Debugger Server Com-
mand Syntax” on page 311.

Connection timeout
After TotalView launches tvdsvr processes, it waits 20

seconds plus 10 seconds for each server launched for
them to respond with successful connection mes-
sages. (The text boxes let you change these values.) If

TotalView User's Guide

57

Setting Up Remote Debugging Sessions
m Starting the Debugger Server for Remote Debugging

the connections are not made in this time, TotalView
times out.

The Base timeout value can be from 1 to 3600 seconds
(1 hour). The incremental (plus) value is from 1 to 360
seconds. You can preset these timeout values using X
resources. See "TOTALVIEW* BULKLAUNCHBASETIMEOUT”
on page 278 and "TOTALVIEW* BULKLAUNCHINCRTIME-
OUT” on page 278 for more information.

If you notice that TotalView fails to launch the tvdsvr
processes (as shown in the xterm window from which
you started TotalView) before the timeout expires,
pressing Ctrl-C in any TotalView window aborts the
launch request.

Starting the Debugger Server Manually

If you cannot tailor the auto-launch feature to work on your system, you can
start the debugger server manually. The major disadvantage of this method
is that it is not secure: other users could connect to your instance of tvdsvr
and begin using your UNIX UID.

Here is how you manually start tvdsvr:
1 From the Root Window, select the Server Launch Window command.

The dialog box shown in Figure 27 appears.

2 Deselect the TotalView Debugger Server Auto Launch Enabled check-
box to disable the auto-launch feature and then select OK.

3 Log in to the remote machine and start tvdsvr:
tvdsvr —server

If you do not (or cannot) use the default port number (4142), you will need
to use the —port or —search_port options For details, refer to "TotalView
Debugger Server Command Syntax” on page 311.

After printing out the port number and the assigned password, the server
begins listening for connections. Be sure to make note of the password;
you will need to enter it later in step 5.

NOTE Because using the -server option is not secure, it must be explicitly
enabled. For details, see “~server” on page 314.

58 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Remote Debugging Sessions

Starting the Debugger Server for Remote Debugging

4 From the Root Window, select the New Program Window command.
Enter the name in the Executable file name field of the dialog that
appears and the fiostname:portnumber in the Program location field.

Select OK.
5 TotalView now tries to connect to tvdsvr.

When TotalView prompts you for the password, enter the password that
tvdsvr displayed in step 3.

Figure 29 summarizes the steps used when you start tvdsvr manually.

»| tvdsvr

TotalView

]

E_E Remote

Executable

Network |

® Makes connection
® Listens

FIGURE 29: Manual Launching of Debugger Server

Single Process Server Launch Command

By default, TotalView uses the following command string when it automati-
cally launches the debugger server for a single process:

%C %R -n "tvdsvr —working_directory %D —callback %L \
—set_pw Y%P —verbosity %V"

where:

%C Expands to the name of the server launch command
being used. On most platforms, this is rsh. On HP this
command is remsh. If the TVDSVRLAUNCHCMD envi-
ronment variable exists, TotalView will use its value in-
stead of its platform-specific default value.

%R Expands to the host name of the remote machine that

you specified in the New Program Window command.

TotalView User's Guide

59

Setting Up Remote Debugging Sessions
m Starting the Debugger Server for Remote Debugging

-n Tells the remote shell to read standard input from
/dev/null.

—working_directory %D
Makes %D the directory to which TotalView will be con-

nected. %D expands to the absolute pathname of the
directory.

Using this option assumes that the host machine and
the target machine mount identical filesystems. That
is, the pathname of the directory to which TotalView is
connected must be identical on the host and target
machines.

After performing this operation, the shell will start the
TotalView Debugger Server using the tvdsvr command.

You must make sure that TotalView directory is on your
path on the remote machine.

—callback %L Establishes a connection from tvdsvr to TotalView us-
ing the indicated host name and port number. %L ex-
pands to the host name and TCP/IP port number
(hostname:port) on which TotalView is listening for con-
nections from tvdsvr.

-set_pw %P Sets a 64-bit password. TotalView must supply this
password when tvdsvr establishes the connection with
it. %P expands to the password that TotalView auto-
matically generated. For more information on this
password, see Chapter 13 “TotalView Debugger Server
Command Syntax” on page 311.

-verbosity %V Sets the verbosity level of the TotalView Debugger
Server. %V expands to the current TotalView verbosity
setting.

You can also use the %H option with this command. This option is dis-
cussed in "Bulk Server Launch on an SGI MIPs Machine” on page 61.

To change the server launch command each time you start TotalView, use
the X Resource "TOTALVIEW* SERVERLAUNCHSTRING” on page 289.

For information on the complete syntax of the tvdsvr command, refer to
“TotalView Debugger Server Command Syntax” on page 311.

60 TotalView User’s Guide Version 4.1

Setting Up Remote Debugging Sessions

Starting the Debugger Server for Remote Debugging

Bulk Server Launch on an SGI MIPs Machine

On an SGI machine, the launch string used for a bulk server launch is similar
to the single process server launch and is:

array tvdsvr —working directory %D -callback host %H \
—callback ports %L —set_pws %P —verbosity %V

where:

—working_directory %D
Makes %D the directory to which TotalView will be con-

nected. %D expands to the absolute pathname of the
directory.

Note that the command assumes that the host ma-
chine and the target machine mount identical filesys-~
tems. That is, the pathname of the directory to which
TotalView is connected must be identical on both the
host and target machines.

After performing this operation, the TotalView Debug-
ger Server is started.

—callback_host %H
Names the host upon which the callback is made. %H

expands to the hostname of the machine upon which
TotalView is running.

—callback_ports %L
Names the ports on the host machines that are used

for callbacks. %L expands to a comma-separated list
of the host names and TCP/IP port numbers (fiost-
name:port, hostname:port...) on which TotalView is listen-
ing for connections from tvdsvr.

—set_pws %P Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection
with it. %P expands to a comma-separated list of 64~
bit passwords that TotalView automatically generates.
For more information, see Chapter 13 “TotalView De-
bugger Server Command Syntax” on page 311.

-verbosity %V Sets the verbosity level of the TotalView Debugger
Server. %V expands to the current TotalView verbosity
setting.

Version 4.1 TotalView User's Guide 61

62

Setting Up Remote Debugging Sessions
m Starting the Debugger Server for Remote Debugging

In some circumstances, you may need to add the %S substitution character
to your command string. This expands a comma-separated list of the port
numbers that the server should use when it makes a callback to TotalView.

You must enable tvdsvr’s use of the array command by adding the following
information to the /usr/lib/array/arrayd.conf file:

#
Command that allow invocation of the TotalView Debugger
server when performing a Bulk Server Launch.
#
command tvdsvr
invoke /opt/totalview/bin/tvdsvr %ALLARGS
user %USER
group %GROUP
project %PROJECT

For information on the complete syntax of the tvdsvr command, refer to
“TotalView Debugger Server Command Syntax” on page 311.

Bulk Server Launch on an IBM RS/6000 AIX Machine

On an IBM RS/6000 AIX machine, the launch string used for a bulk server
launch is:

%C %H “poe —pgmmodel mpmd —resd no —tasks_per_node 1
—procs %N —hostfile %t 1 —cmdfile %t2"

where the elements unique to TotalView are:

%N Expands to the number of servers that will be
launched.
%t1 A temporary file created by TotalView that contains a

list of the hosts upon which tvdsvr will run.

TotalView generates this information by expanding the
%R symbol in the Bulk Launch Window.

%t2 A file that contains the commands to start the tvdsvr
processes on each machine. TotalView creates these
lines by expanding the following template:

tvdsvr —working directory %D \
—callback %L —set_pw %P —verbosity %V

TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Remote Debugging Sessions

Starting the Debugger Server for Remote Debugging

Disabling Auto-Launch

If after changing the auto-launch options, TotalView still cannot automati-
cally start tvdsvr, you must disable the auto-launch and start tvdsvr manu-
ally. Here are three ways for doing this:

m If you change the auto-launch options (see "Single Process Server Launch
Options” on page 55), you must also deselect the TotalView Debugger
Server Auto Launch Enabled checkbox in the Server Launch Window
dialog box. This disables auto-launch for the current TotalView session.

® When you debug the remote process, as described in “Debugging Remote
Processes” on page 51, enter a host name and port number in the bottom
section of the New Program Window dialog box. This disables auto-
launch for the current connection.

B Set an X resource that disables auto-launch. For more information, refer
to "TOTALVIEW* SERVERLAUNCHENABLED” on page 289. This resource dis-
ables auto-launch for all TotalView session.

NOTE If you disable the auto-launch feature, you must start tvdsvr before
you load a remote executable or attach to a remote process.

Changing the Remote Shell Command

Some environments require that you create your own auto-launch com-
mand. You might do this, for example, if your remote shell command does
not provide the security required by your site and you need to invoke
remote processes using a more secure command.

If you create your own auto-launch command, you must invoke tvdsvr using
the —callback and —set_pw arguments.

If you are not sure whether rsh (or remsh on HP machines) works at your
site, try typing “rsh hostname” (or “remsh fostname”) from an xterm, where
hostname is the name of the host upon which you want to invoke the remote
process. If this command prompts you for a password, you must add the
host name of the host machine to your .rhosts file on the target machine.

For example, you could use a combination of the echo and telnet com-
mands:

echo %D %L %P %YV, telnet %R

TotalView User's Guide

63

64

Setting Up Remote Debugging Sessions
m Starting the Debugger Server for Remote Debugging

Once telnet establishes a connection to the remote host, you could use the
cd and tvdsvr commands directly, using the values of %D, %L, %P, and %V
that were displayed by the echo command. For example:

cd directory

tvdsvr —callback hostname:portnumber —set_pw password
If your machine does not have a command for invoking a remote process,
you cannot use the auto-launch feature and should disable it.

For information on the rsh and remsh commands, refer to the manual page
supplied with your operating system.

Changing the Arguments

You can also change the command-line arguments passed to rsh (or what-
ever command you use to invoke the remote process).

For example, if the host machine does not mount the same filesystems as
your target machine, the debugger server may need to use a different path
to access the executable being debugged. If this is the case, you could
change %D to the directory used on the target machine.

If the remote executable reads from standard input, you cannot use the —n
option with your remote shell command because this option causes the
remote executable to receive an EOF immediately on standard input. If you
omit —n, the remote executable reads standard input from the xterm in
which you started TotalView. This means that you should invoke tvdsvr from
another xterm window if your remote program reads from standard input.
Here's an example:

%C %R "cd %D 8&& xterm —display fostname:0 —e tvdsvr \

—callback %L —set_pw Y%P —verbosity %V"

Now, each time TotalView launches tvdsvr, a new xterm appears on your
screen to handle standard input and output for the remote program.

Auto-launch Sequence

If you want to know more about auto-launch, here is the sequence of
actions carried out by you, TotalView, and tvdsvr:

TotalView User’s Guide Version 4.1

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line

1 With the New Program Window command, you specify the host name
of the machine on which you want to debug a remote process, as
described in “"Debugging Remote Processes” on page 51.

2 TotalView begins listening for incoming connections.

3 TotalView launches the tvdsvr process with the server launch com-
mand. ("Single Process Server Launch Command” on page 59 describes
this command.)

4 The tvdsvr process starts on the remote machine.
5 The tvdsvr process establishes a connection with TotalView.

Figure 30 summarizes these actions.

tvdsvr

=1
ol ML__

TotalView

E_E Remote

Executable

o
I

Network |

@D Listens

© Invokes commands
O tvdsvr starts

® Makes connection

FIGURE 30: Root Window Showing Process and Thread Status

Debugging Over a Serial Line

Version 4.1

TotalView allows you to debug over a serial line as well as TCP/IP sockets.
However, if a network connection exists, you will probably want to use
TCP/IP sockets remote debugging for better performance.

You will need to have two connections to the target machine. One connec-
tion is for the console and the other is for TotalView's use. Do not try to use
one serial line; TotalView cannot share a serial line with the console.

TotalView User's Guide

65

66

Setting Up Remote Debugging Sessions
m Debugging Over a Serial Line

Figure 31 illustrates a TotalView debugging session using a serial line. In this
example, TotalView is communicating over a dedicated serial line with a
TotalView Debugger Server running on the target host. A VT100 terminal is
connected to the target host’s console line, allowing you to type commands
on the target host.

tvdsvr
TotalView ¢
VT100
«—> Remote
E Console Executable
Line
Network |

FIGURE 31: TotalView Debugging Session Over a Serial Line

Start the TotalView Debugger Server

To start a TotalView debugging session over a serial line from the command
line, you must first start the TotalView Debugger Server (tvdsvr).

Using the console connected to the target machine, start tvdsvr and specify
the name of the serial port device on the target machine. The syntax of this
command is:

tvdsvr —serial device[:baud=num]

where:
device The name of the serial line device
num The serial line’s baud rate; if you omit the baud rate,

TotalView uses a default value of 38400
For example:
tvdsvr —serial /dev/com1:baud=38400

After it is starts, the TotalView Debugger Server will wait for TotalView to es-
tablish a connection.

TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line

Starting TotalView on a Serial Line

Start TotalView on the host machine and include the name of the serial line
device. The syntax of this command is:

totalview —serial device[:baud=num] filename

where:
device The name of the serial line device on the host machine
num The serial line’s baud rate; if you omit the baud rate,
TotalView uses a default value of 38400
filename The name of the executable file

For example:

totalview —serial /dev/term/a test_pthreads

New Program Window

Here is the procedure for starting a TotalView debugging session over a

serial line when you are already in TotalView:

1 Start the TotalView Debugger Server. (This is discussed in “Start the
TotalView Debugger Server” on page 66).

2 [ssue the New Program Window command from the Root Window to
display the New Program Window dialog box, shown in Figure 32.

Enter the name of the executable file in the Executable file name field.

Enter the name of the serial line device in the Program location field, and
select the Serial line radio button.

3 Select OK.

TotalView User's Guide 67

Setting Up Remote Debugging Sessions
m Debugging Over a Serial Line

Executable file names

Filter

@ Find or create a process window
{3 Create a new process window

Attach to existing process or core file {or blank if nonei:

@ Attach to an existing process (Enter PID}
O Core file {(Enter core file name}

Program location for blank if locall:

Pdev/term/azband=30400]

) Remote host (Enter remote hast name or IP address}
@ Serial line (Enter device name}

FIGURE 32: New Program Window Dialog Box

68 TotalView User’s Guide Version 4.1

Chapter 5

Setting Up Parallel .
Debugging Sessions .

This chapter explains how to set up TotalView parallel debugging sessions for
applications that use the following parallel execution models:

® MPI (and MPICH)

B OpenMP

B ORNL PVM and Compaq DPVM
m SGI "shared memory” (shmem)
m Portland Group HPF

Debugging MPI Applications

Version 4.1

You can use TotalView to debug your Message Passing Interface (MPI) pro-
grams. With TotalView, you can:

B Automatically acquire processes at start-up.

m Attach to a parallel program and automatically acquire the parallel pro-
cesses.

m Display the message queue state of a process.

Automatic process acquisition at start-up is supported for the following MPI
implementations:

m MPICH version 1.1.0 or later running on any platform that is supported by
both TotalView and MPICH (see “Debugging MPICH Applications” on page
70). (You are strongly urged to use a later version of MPICH. Information
on versions that work with TotalView can be found in the TOTALVIEW
RELEASE NOTES.)

TotalView User's Guide

69

5 Setting Up Parallel Debugging Sessions
_ Debugging MPICH Applications

m Compaqg MPI (DMPI) running on Compagq Alpha (see "Debugging Compaq
MPI Applications” on page 74).

®m HP MPI running on HP PA-RISC 1.1 or 2.0 processors (see “Debugging HP
MPI Applications” on page 75).

® [BM MPI Parallel Environment (PE) running on AIX on RS/6000 and SP (see
"Debugging IBM MPI (PE) Applications” on page 76).

® SGI MPI running on IRIX on MIPS processors (see "Debugging SGI MPI
Applications” on page 80).

m QSW RMS?2 running on Compaq AlphaServer SC systems (see “Debugging
QSW RMS2 Applications” on page 81).

For more information on message queue display, see “Displaying Message

Queue State” on page 82.

For tips on debugging parallel applications, see “Parallel Debugging Tips” on
page 110.

Debugging MPICH Applications

70

To debug Message Passing Interface/Chameleon Standard (MPICH) applica-
tions you must use MPICH version 1.1.0 or later on a homogenous collec-
tion of machines. If you need a copy of MPICH, you can obtain it at no cost
from Argonne National Laboratory at www.mcs.anl.gov/mpi. (You are
strongly urged to use a later version of MPICH. Information on versions that
work with TotalView can be found in the TOTALVIEW RELEASE NOTES.)

You should configure the MPICH library to use either the ch_p4, ch_shmem,
ch_Ifshmem, or ch_mpl devices. For networks of workstations, ch_p4 is the
normal default. For shared-memory SMP machines, use ch_shmem. On an

IBM SP machine, use the ch_mpl device. The MPICH source distribution in-
cludes all of these devices and you can choose one when you configure and
build MPICH.

NOTE When configuring MPICH, you must ensure that the MPICH library maintains
all of the information required by TotalView. Use the —debug option with the MPICH
configure command. In addition, the TotalView Release Notes contains information
on patching your MPICH 1.1.0 distribution.

TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications

Starting TotalView on an MPICH Job

You must have both TotalView (totalview) and the TotalView Debugger
Server (tvdsvr) in your path when you start an MPICH job under TotalView's
control. Use the MPICH mpirun command that you customarily use and add
the —tv option:

mpirun [MPICH-arguments |1 —tv program [program-arguments |
For example:
mpirun —np 4 —tv sendrecv

The MPICH mpirun command extracts the value of the TOTALVIEW envi-
ronment variable and then uses its value when it starts the first process in
the parallel job. Therefore, setting this environment variable lets you use a
different TotalView, or pass command line options to TotalView.

For example, here’s the C shell command that tells mpirun to start the To-
talView debugger using the —no_stop_all option:

setenv TOTALVIEW "totalview —no_stop_all"

On workstations, TotalView starts the first process of your job, the master
process, under its control. Then, you can set breakpoints, and debug your
code as usual.

On the IBM SP machine, the mpirun command uses the poe command to
start an MPI job. While you still must use the MPICH mpirun (and it -tv op-
tion) command to start an MPICH job, the way you start MPICH differs since
you are using poe. For details of using TotalView with poe, see “Starting Total-
View on a PE Job” on page 77.

When you let code run through the call to MPI_Init(), TotalView automati-
cally acquires the other processes that make up your parallel job. A dialog
box appears that asks if you want to stop the spawned processes. This al-
lows you to stop all of the processes in MPI_Init() so you can check their
states before they run too far, as shown in Figure 33.

TotalView automatically copies breakpoints from the master process to the
slave processes as it acquires them. You do not have to first stop the slave

TotalView User's Guide

71

72

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications

Process sendrecy,0 has called WPI_Init
Do you want to stop the spawned processes in MPI_Init 7

FIGURE

33: Stopping Spawned Processes Dialog Box

processes in MPI_Init(). Next, TotalView updates the Root Window to show
all the newly acquired processes.

Attaching to an MPICH Job

TotalView allows you to attach to an MPICH application even if it was not
started under TotalView's control. Here is how you do this:

1
2

TotalView User’s Guide

Start TotalView in the normal manner.

Issue the Show All Unattached Processes command from the Root
Window. A window appears on your screen displaying the Processes
that TotalView doesn’t own window, as shown in the following figure.

P Processes that TotalView dossn’t own TRSEEE
<

Localy 9 processes, 6 attachable

24PEE R

21140 R
23954 R oo sENdrECY

21360 R Ahomesdskahndpum3s 1 ibARSEE A pumd3
22166 R rshd

=

FIGURE 34: Processes that TotalView doesn’t own Window

On workstation clusters, attach to the first MPICH process by diving
into it.
Normally, the first MPICH process is the highest process with the correct

image name in the process list. Other instances of the same executable
can be:

» The p4 listener processes if you have configured MPICH with ch_p4.

» Additional slave processes if you have configured MPICH with
ch_shmem or ch_Ifshmem.

Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications

» Additional slave processes if you have configured MPICH with ch_p4
and have a machine file that places multiple processes on the same
machine.

» On an IBM SP, attach to the poe process that started your job. For
details, see “Starting TotalView on a PE Job” on page 77.

4 After you attach to the processes, TotalView asks if you also wish to
attach to the slave MPICH processes. If you do, press Return or
choose Yes. If you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
of the MPICH processes.

In some situations, the processes you expect to see may not exist (for
example, they may have crashed or exited). TotalView acquires all the pro-
cesses it can and then warns you if it could not attach to some of them. If
you attempt to dive into a process that no longer exists (for example,
through the source or target fields of a message state display), TotalView
tells you that the process no longer exists.

MPICH P4 procgroup Files

If you are using MPICH with a P4 procgroup file (by using the —p4pg option),
make sure you use the same absolute path name in your procgroup file and
on the mpirun command line. If your procgroup file contains different path
names that resolve to the same executable, TotalView treats each path
name as a separate instance of the executable, which causes debugging
problems.

You must use the same absolute pathname for the executable on the Total-
View debugger’s command line and in the procgroup file. For example:

% cat p4group

local 1 /users/smith/mympichexe

bigiron 2 /users/smith/mympichexe
%6 mpirun —p4pg p4group —tv /users/smith/mympichexe

In this example, TotalView:

1 Reads the symbols from the executable mympichexe only once.
2 Places MPICH processes in the same TotalView share group.

TotalView User's Guide 73

5 Setting Up Parallel Debugging Sessions
_ Debugging Compaq MPI Applications

3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2,
and mympichexe.3.

If Totalview assigns names such as mympichexe<mympichexe>.0, a prob-

lem occurred and you should check the contents of your procgroup file and

mpirun command line.

Debugging Compaq MPI Applications

You can debug Compaqg MPI applications on the Compaqg Alpha platform. To
use TotalView with Compag MPI, you must use Compaq MPI version 1.7 or
later.

Starting TotalView on a Compaq MPI Job

Compaqg MPI programs are normally started using the dmpirun command.
You would use a very similar command to start an MPI program under the
debugger’s control:

totalview dmpirun —a dmpirun-command-line

This invokes TotalView and tells it to show you the code for the main pro-
gram in dmpirun. Since you are not usually interested in debugging this
code, you should let the program run by using the Go Process command.

The dmpirun command runs and starts all of the MPI processes. TotalView
acquires them and then ask if you want to stop them all.

NOTE Problems re-running Compaqg MPI programs under TotalView control due to
resource allocation issues within Compaq MPI can occur. Consult the Compag MPI
manuals and release notes for information on cleaning up the MPI system state using
mpiclean.

Attaching to a Compaq MPI Job

To attach to a running Compag MPI job, attach to the dmpirun process that
started the job. The procedure for attaching to a dmpirun process is the
same as the procedure for attaching to other processes. For details, see "At-
taching to Processes” on page 33.

74 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Debugging HP MPI Applications

Once you have attached to the dmpirun process, TotalView displays the
same dialogue as it does with MPICH. (See step 4 on page 73, included in
"Attaching to an MPICH Job” on page 72.)

Debugging HP MPI Applications

You can debug HP MPI applications on the a PA-RISC 1.1 or 2.0 processor. To
use TotalView with HP MPI, you must use HP MPI version 1.6.

Starting Totalview on an HP MPI Job

TotalView lets you start an MPI program in three ways:
totalview program —a mpi-arguments

This command tells TotalView to start the MPI process. TotalView will then
show you the machine code for the HP MPI mpirun executable. Since you
are not usually interested in debugging this code, you should let the pro-
gram run by using the Go Process command.

mpirun mpi-arguments —tv program
This command tells MPI that it should start TotalView.
mpirun mpi-arguments —tv -f startup_file

This third method tells MPI that it should start TotalView and then start the
MPI processes as they are defined within the startup_file script. This script
names the processes that will be started. Typically, this file has contents that
are similar to:

-h localhost -np 1 sendrecv

-h localhost -np 1 sendrecva
In this example, sendrecv and sendrecva are two different exeutable pro-
grams. (Your HP MPI documentation describes the contents of this file.)

Just before mpirun starts the MPI processes, TotalView acquires them and
asks if you want to stop the process before it starts executing. If your answer
is yes, TotalView halts them before they enter the main program. You can
then enter breakpoints.

Version 4.1 TotalView User's Guide 75

5 Setting Up Parallel Debugging Sessions
_ Debugging IBM MPI (PE) Applications

Attaching to an HP MPI Job

To attach to a running HP MPI job, attach to the HP MPI mpirun process
that started the job. The procedure for attaching to a mpirun process is the
same as the procedure for attaching to any other process. For details, see
"Attaching to Processes” on page 33.

Once you have attached to the HP MPI mpirun process, TotalView displays
the same dialog as it does with MPICH. (See step 4 on page 73 of "Attaching to
an MPICH Job” on page 72.)

Debugging IBM MPI (PE) Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView's automatic process acquisition capabilities,
you must be running release 2.2 or later of the Parallel Environment for AIX.
If you aren't running release 2.2, you can run TotalView on release 2.1 if you
also load PTF 15.

See "Displaying Message Queue State” on page 82 for message queue display
information.

Preparing to Debug a PE Application

The following sections describe steps you must perform before you can dis-
play a PE application.

Switch-Based Communication: If you are using switch-based
communications (either “IP over the switch” or "user space”) on an SP ma-
chine, you must configure your PE debugging session so that TotalView can
use "IP over the switch” for communicating with the TotalView Debugger
Server, by setting adaptor_use to shared and cpu_use to multiple, as fol-
lows:

m If you are using a PE host file, add shared multiple after all host names or
pool IDs in the host file.

76 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications

B Whether or not you have a PE host file, enter the following arguments on
the poe command line:

—adaptor_use shared —cpu_use multiple

If you do not want to set these arguments in the poe command line, set
the following environment variables before starting poe:

setenv MP_ADAPTOR_USE shared
setenv MP_CPU_USE multiple

When using “IP over the switch,” the default is usually shared adapter use
and multiple cpu use; to be safe, set it explicitly using one of these tech-
niques.

When you are using switch-based communications, you must run TotalView

on one of the SP or SP2 nodes. Since TotalView uses “IP over the switch” in
this case, you cannot run TotalView on an RS/6000 workstation.

Remote Login: You must to be able to use remote login using rsh. To
do this, add the host name of the remote node to the /etc/hosts.equiv file or
to your .rhosts file.

When the program is using switch-based communications, TotalView tries to
start the TotalView Debugger Server using the rsh command with the switch
host name of the node.

Timeout: TotalView automatically sets the timeout value at 600 sec-
onds. If you get communications timeouts, you may need to set the value at
a higher number, as in the following example:

setenv MP_TIMEOUT 1200

NOTE The timeout value cannot be set using the poe command line.

Starting TotalView on a PE Job

Parallel Environment (PE) programs are run from the command line using
the following syntax:

program [arguments1 [PE_arguments]
They can also be run the poe command:

poe program [arguments1 [PE_arguments]

TotalView User's Guide 77

5 Setting Up Parallel Debugging Sessions
_ Debugging IBM MPI (PE) Applications

However, if you start TotalView on a PE application, you must start use the
poe executable as TotalView's target. The syntax of the command is:

totalview poe —a program [arguments1 [PE arguments]
For example:

totalview poe —a sendrecv 500 -rmpool 1

Setting Breakpoints

After TotalView is running, you can start the poe process; this process then
starts the parallel processes. Issue the Go Process command from the Pro-
cess Window. TotalView displays a dialog box that asks if you want to stop
the parallel tasks, as shown in the following figure.

Procesz poe has started the parallel tasks,
Do you wish to stop the parallel tasks before they enter HAINY

FIGURE 35: Parallel Tasks Dialog Box

If you want to set breakpoints in your code at this point, answer Yes to stop
the processes. TotalView initially stops the parallel tasks, which also allows
you to set breakpoints. After a program window for the first parallel task ap-
pears, you can set breakpoints and control the parallel tasks using normal
TotalView commands.

If you have already set and saved breakpoints in a file and want to reload the
file, answer No. After TotalView reloads your breakpoints, the parallel tasks
continue running.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks by issuing
the Go Group command from the Parallel Task Program Window.

NOTE No parallel tasks will reach the first line of code in main until all parallel tasks
start.

78 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications

You should be very cautious in placing breakpoints at or before the line that
contains the call to MPI_Init() (or MPL_Init()) because timeouts can occur
during the initialization process. Once you allow any of the parallel pro-
cesses to proceed into the MPI_Init() or MPL_Init() call, you should allow all
of the parallel processes to proceed through this call within a short time. For
more information on this, see "Avoid unwanted timeouts” on page 113.

Attaching to a PE Job

To take full advantage of TotalView's poe-specific automation, you need to
attach to poe itself, and let TotalView automatically acquire the poe pro-
cesses on its various nodes. This set of acquired processes will include the
processes you want to debug.

You attach to the poe processes the same way you attach to other pro-
cesses. For details, see "Attaching to Processes” on page 33.

Attaching From a Node Running poe
To attach TotalView to poe from the node running poe, start TotalView in the

directory of the debug target. If you cannot start TotalView in the debug tar-
get directory, you can start TotalView by editing the TotalView Debugger
Server (tvdsvr) command line before attaching to poe. See “Single Process
Server Launch Command” on page 59.

In the TotalView Root Window, bring up the Unattached Processes Window,
find the poe process list in your Root Window, and attach to it by diving into
it. TotalView launches TotalView Debugger Servers as necessary.

TotalView updates the Root Window and opens a Process Window for the
poe process, which you just dove on. In the Root Window, find the process
you want to debug and dive on it to open a Process Window from which you
can control and debug the target process.

If source code files are available but are not displayed in the Source Code
Pane, you probably have not told TotalView where these files reside. You can
tell TotalView where the files are by invoking the Display/Directory/Edit
command.

TotalView User's Guide

79

5 Setting Up Parallel Debugging Sessions
_ Debugging SGI MPI Applications

Attach From a Node Not Running poe
To attach TotalView to poe from a node not running poe, follow the same

procedures as in attaching from a node running poe, except, since you did
not run TotalView from the node running poe (the start-up node), you will
not be able to see poe on the process list in your Root Window and you will
not be able to start it by diving into it.

To get poe on the process list in your Root Window, connect TotalView to the
start-up node. For details, see “Connecting to Remote Machines” on page 53 and
‘Attaching to Processes” on page 33. Then, update the list of processes in the
Processes that TotalView doesn’t own window by selecting Update
Process List from the menu. In the startup_node_name area, look for the pro-
cess named poe and continue as if attaching from a node running poe.

Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI version 3.1, which is
part of the Message Passing Toolkit (MPT) 1.2 package.

Message queue display is supported by release 1.3 of the Message Passing
Toolkit. See "Displaying Message Queue State” on page 82 for message queue
display.

Starting Totalview on a SGI MPI Job

SGI MPI programs are normally started using the mpirun command. You
would use a very similar command to start an MPI program under the Total-
View debugger’s control:

totalview mpirun —-a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for SGI MPI
mpirun. Since you are not usually interested in debugging this code, you
should let the program run by using the Go Process command.

The SGI MPI mpirun command runs and starts all MPI processes. After To-
talView acquires them, it asks if you want to stop them at start-up. If you an-

80 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Debugging QSW RMS2 Applications

swer yes, TotalView halts them before they enter the main program. You can
then enter breakpoints.

If you set a verbosity level that allows informational messages, TotalView
also prints a message showing the name of the array and the value of the ar-
ray services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job

To attach to a running SGI MPI job, attach to the SGI MPI mpirun process
that started the job. The procedure for attaching to a mpirun process is the
same as the procedure for attaching to any other process. For details, see
‘Attaching to Processes” on page 33.

Once you have attached to the SGI MPI mpirun process, TotalView displays
the same dialog as it does with MPICH. (See step 4 on page 73 of "Attaching to
an MPICH Job” on page 72.)

Debugging QSW RMS2 Applications

Version 4.1

TotalView supports automatic process acquisition on AlphaServer SC sys-
tems that use Quadrics’ RMS2 resource management system with the QSW
switch technology.

Message queue display for RMS2 is not yet supported by the system.

Starting TotalView on an RMS2 Job

To start a parallel job under the control of TotalView, use TotalView as
though you were debugging the prun command itself:

totalview prun —a prun-command-line

TotalView starts up and shows you the machine code for RMS2 prun. Since
you are not usually interested in debugging this information, you should let
the program continue running by using the Go Process command.

The RMS2 prun command executes and starts all of the MPI processes. To-
talView acquires them and then asks if you want to stop them at start-up. If

TotalView User's Guide 81

5 Setting Up Parallel Debugging Sessions
_ Displaying Message Queue State

you do stop them, TotalView halts them before they enter the main pro-
gram. You can then enter breakpoints.

Attaching to an RMS2 Job

To attach to a running RMS?2 job, attach to the RMS2 prun process that
started the job.

You attach to the prun processes the same way you attach to other pro-
cesses. For details on attaching to processes, see "Attaching to Processes” on
page 33.

Once you have attached to the RMS2 prun process, TotalView displays the
dialog as it does with MPICH. (See step 4 on page 73 of “Attaching to an
MPICH Job".)

Displaying Message Queue State

The TotalView message queue display (MQD) allows you to display the mes-
sage queue state of your MPI program. This lets you determine the cause of
message passing deadlocks.

To use the message queue display feature, you must be using the following
versions of MPI, as follows:

® MPICH version 1.1.0 or later.
® Compagq Alpha MPI (DMPI) version 1.7.
m HP HP-UX version 1.6.

B [BM MPI Parallel Environment (PE) version 2.3 or 2.4; but only for pro-
grams using the threaded IBM MPI libraries. MQD is not available with
earlier releases, or with the non-thread-safe version of the IBM MPI
library. Therefore, to use TotalView MQD with IBM MPI applications, you
must compile and link your code using the mpcc_r, mpxIf_r, or mpxIf90 _r
compilers.

m For SGI MPI TotalView message queue display, you must obtain the Mes-
sage Passing Toolkit (MPT) release 1.3 or later. Check with SGI for avail-
ability.

82 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Displaying Message Queue State

Message Queue Display Basics

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by issuing the Message State Window com-
mand in the Process State Info menu of the Process Window. TotalView
opens a Message State Window for the process, as shown in Figure 36.

The Message State Window displays the state of each of the MPI communi-
cators that exist in the process. In some MPI implementations, such as
MPICH, user-visible communicators are implemented as two internal com-~
municator structures, one for point-to-point and the other for collective op-
erations. TotalView shows both structures.

NOTE You cannot edit any of the fields in the Message State Window.

The contents of the Message State Window are only valid when the process
is stopped. (See Figure 36.)

For each communicator, TotalView displays the following fields:

B Communicator Name. MPI names the pre-defined communicators such
as MPI_COMM_WORLD(). MPICH 1.1 and Compaqg MPI also provide the
MPI-2 MPI_NAME_PUT() and MPI_NAME_GET() communicator naming
functions, so you can associate a name with a communicator. If you use
MPI_NAME_PUT() to name a communicator, TotalView uses the name
you gave it when displaying the communicator, so you do not have to
guess which communicator is which.

IBM MPI and SGI MPI do not implement the MPI-2 communicator naming
functions; this means that only pre-defined communicators are named.
For user-created communicators, the integer value that represents the
communicator is displayed. This is the value that a variable of type
MPI_Communicator has if it represents the given communicator.

m Comm_size is the number of processes in the communicator. This is the
same as the result of MPI_Comm_size() applied to the communicator.

® Comm_rank is the rank in the communicator of the process that owns
the Message State Window. This is the same result that you would get if
you had applyed MPI_Comm_rank to the communicator in this process.

m List of pending unexpected messages; that is, messages that were sent to
this communicator but have not yet matched with a receive.

Version 4.1 TotalView User's Guide 83

5 Setting Up Parallel Debugging Sessions
_ Displaying Message Queue State

Mezzage State for "sendrecwy,(" (20003,13
MPT_COMH_WORLD i
Comm_size 2
Comm_t-ark, 0
Pending receives t hone
Unexpected messages @ none
Pending sends t hone
MPT_COMM_WORLD_collective
Comm_size 2
Comm_t-ark, 0
Pending receives t hone
Unexpected messages @ none
Pending sends t hone
HPI_COMM_SELF
Comm_size 1
Comm_t-ark, 0
Pending receives t hone
Unexpected messages @ none
Pending sends t hone
MPI_COMM_SELF _collective
Comm_size 1
Comm_t-ark, 0
Pending receives t hone
Unexpected messages @ none
Pending sends t hone 1:;

FIGURE 36: Message State Window

m List of pending receive operations.
B List of pending send operations.

Message Operations

For each communicator, TotalView displays a list of pending receive opera-
tions, pending unexpected messages, and pending send operations. Each
operation has an index value displayed in square brackets ([#]), and each
operation can include the following fields:

Actual Source If the Status is Complete and the Source is ANY, the
receiving process.

Actual Tag If the Status is Complete and the Tag value is ANY, this
is the received tag value.

84 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Displaying Message Queue State

Buffer Length or Received Length

Function

Source or Target

Status

Tag

Type

The buffer length in bytes, shown in decimal and hexa-
decimal.

The MPI function (IBM MPI only). The name of the MPI
function associated with the operation; for example,
MPI_lrecv().

The source or target process. Source is the process
from which the message should be received. Target is
the process to which the message is being sent. This
field shows the index of the process in the communi-
cator, and the process name in parentheses. The dis-
play shows ANY if the message is being received from
MPI_ANY_SOURCE.

Dive into this field to display a Process Window.

The status of the operation. Operation status can be
Pending, Active, or Complete.

The tag value. If the message is being received with
MPI_ANY_TAG, the display shows ANY.

The MPI data type (IBM MPI only). The MPI data type
associated with the operation; for example, MPI_INT().

User Buffer, System Buffer, or Buffer

lowing:

The address of the buffer. Dive into this field to view a
data window displaying the buffer contents.

MPI Process Diving
To display more detail, you can dive into certain fields in the Message State

Window. When you dive into a process field, TotalView does one of the fol-

B Raises its Process Window if it exists.

m Sets the focus to an existing Process Window on the requested process.
m If a Process Window does not exist, creates a new one for the process.
If there is no relevant Process Window and you want TotalView to create a

new Process Window instead of refocusing an existing Process Window, hold
down the Shift key with the dive button.

TotalView User's Guide

85

Setting Up Parallel Debugging Sessions

Displaying Message Queue State

MPI Buffer Diving
When you dive into the buffer fields, Totalview opens a data window. It also

guesses what the correct format for the data should be based on the buf-
fer’'s length and the data’s alignment. If TotalView guesses incorrectly, you

can edit the type

field in the data window.

NOTE TotalView does not set the buffer type using the MPI data type.

Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives
list. The following figure shows examples of MPICH and IBM MPI pending re-

ceive operations.

Mezzage State for "sendrecy, 0" (22207,1)

HPT_COMM_WORLD
Comm_size
Comim_t-ak,
| Pending receives
[o]

Status

Source

Tag

Uzer Buffer

Buffer Length
Unexpected messages
Pending sends

2
0

Pending

1 tzendrecw, 1} 4]
2010 (0000007 da)

0x000BS5E0 —> (00000000 (0)——@
40000 {0:x00003c40)

1 none
1 none

@ Hessage State for "poedAllcy>,1" ([hlus033,%] 41138,1)

HPT_COMH_WORLT
Comn_size
Com_t-ank:,
Pending receives
[o]

Function
o gl
Status
Source
8] Tag-selection
Uzer Buffer
Buffer Length

2
1

MPI_Irecw

8 (MPI_INT?
Pending

0 {poe<AlLc>, 00
ANY

0x20272268 —> (00000000 {03
40 L0x00000028

MPICH

Dive to view data

Operation index
One receive operation
Dive to view process

(1]
2]
133
(4]

o000

IBM MPI
Additional fields
Tag selection of ANY

FIGURE 37: Message State Pending Receive Operation

86 TotalView User’s Guide

Version 4.1

Version 4.1

NOTE TotalView displays all of the receive operations that are maintained by the IBM
MPI library. You should set the environment variable MP_EUIDEVELOP to the value
DEBUG if you want blocking operations to be visible; otherwise, only non-blocking
operations are maintained. For more details on the MP_EUIDEVELOP environment

Setting Up Parallel Debugging Sessions

Displaying Message Queue State

variable, consult the IBM Parallel Environment Operations and Use manual.

Unexpected Messages

The Unexpected messages portion of the Message State Window shows in-
formation for messages that the MPI library has retrieved and enqueued, but
which are not yet matched with a receive operation. Figure 38 shows an ex-

ample of MPICH unexpected messages.

Mezzage State for "sendrecw, Q" (22235,1)

MPI_COMM_WORLD
Comm_zize
Comm_rank,
Pending receives
[01

Status

Source

Tag

Uzer Buffer

Buffer Length

Unexpected meszages

Status

Source

Tag

System Buffer

Buffer Length

Received Length
[1]

Status

Source

Tag

System Buffer
Buffer Length
Received Length

2
0

Pending

1 {sendrecw,1}

2010 (0x000007da)

(0OBS5he —2 QxQOO0O000 {0}
40000 (00000340

Complete

1 {zendrecy,1)

2001 {Ox000007d1

OOOCZ208 =2 OxOOO0OO00 (0}
40000 (000940

40000 (00000340

Complete

1 {zendrecv,1l)

2002 (00000072

(aichebi = o0 {0}
40000 {00040

40000 {000 Scd)

FIGURE 38: Message State Unexpected Messages

Some MPI libraries such as MPICH 1.1.1 only retrieve an already received

message as a side effect of calls to functions such as MPI_Recv() or

MPI_lprobe(). (In other words, while some versions of MPI may know about
the message, it may not as yet put it into a queue.) This means that the de-
bugger can not list a message until after the destination process makes one

of these kinds of calls.

TotalView User's Guide

87

5 Setting Up Parallel Debugging Sessions
_ Displaying Message Queue State

Pending Send Operations
TotalView displays each pending send operations in the Pending sends list.
This is shown in Figure 39.

SR Messane State for "sendrece,l" (222E0,1)

HPI_COMM_WORLD
Comm_zize 2
Comm_tanl 1
Pending receives nore
Unexpected messzages @ none
Pending sends
[0l

Mon-blocking =end

PR

Status Complete

Target 0 {zendrecy,(}

Tag 2001 {Ow000007 13

Buffer 00008300 - QeOOOOQA00 (0}

Buffer Length 40000 (00000340}
[11]

Mon—blocking =zend

Status Complete

Target 0 {zendrecyw, 0}

Tag 2002 (0x000007d23

Buffer e000a3het) =% QeOOOO000 {0} i
Buffer Length 40000 {0x00003c40) i

FIGURE 39: Message State Pending Send Operation

MPICH does not normally keep information about pending send operations.
However, when you configure MPICH, you can tell it to maintain a list of
these operations. You will then need to start your program under TotalView's
control and you use the —ksq, or KeepSendQueue, option to mpirun.)

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if they are not displayed
here, you can see that these operations are taking place because the call is
in the stack backtrace.

If you attach to an MPI program that is not maintaining send queue informa-
tion, TotalView displays the following message:

Pending sends : no information available

MPI Debugging Troubleshooting

If you cannot successfully start TotalView on MPI programs, check the fol-
lowing:

88 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications

® Can you successfully start MPICH programs without TotalView? The
MPICH code contains some useful scripts to help you verify that you can
start remote processes on all of the machines in your machines file. (See
tstmachines in mpich/util.)

B Does the tvdsvr fail to start? tvdsvr must be on your PATH when you log
in. Remember that rsh is being used to start the server, and it does not
pass your current environment to the process you started remotely.

B You cannot get a message queue display if you get the following warning:

The symbols and types in the MPICH library used by TotalView to
extract the message queues are not as expected in the image
< <your image name>>. This is probably an MPICH version or
configuration problem.

You need to check that you are using MPICH 1.1.0 or later and that you
have configured it with the —debug option. (To verify this, look in the
config.status file at the root of the MPICH directory tree).

B Make sure you have the correct MPI version and have applied the re-
quired patches. See the TOTALVIEW RELEASE NOTES for up-to-date infor-
mation.

B Under some circumstances, MPICH kills TotalView with the SIGINT signal.
You could see this behavior when restarting an MPICH job using the
debugger’s Delete Program command in the Process Window. If TotalView
exits and is terminated abnormally with a Killed message, try setting the
TotalView —ignore_control_c command line option. For example:

setenv TOTALVIEW "totalview —-ignore_control_c'
mpirun —tv /users/smith/mympichexe

Debugging OpenMP Applications

Version 4.1

TotalView provides explicit support for many OpenMP C and Fortran compil-
ers. The compilers and architectures that we support are listed in the TOTAL-
VIEW RELEASE NOTES and our web site.

Here are some of the features that TotalView supports:

m Source level debugging of the original OpenMP code.

m The ability to plant breakpoints throughout the OpenMP code, including
lines that are executed in parallel.

m Visibility of OpenMP worker threads.

TotalView User's Guide

89

5 Setting Up Parallel Debugging Sessions
_ Debugging OpenMP Applications

B Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

m Astack back link token in worker threads’ stacks so that you can find their
master stack.

m Access to OMP THREADPRIVATE data in code compiled by the IBM and
Compaq compilers.

The example code used in this section is included in the TotalView distribu-
tion in the file named examples/omp_simple_f.

NOTE On the SGI IRIX platform, you must use the MIPSpro 7.3 compiler or later to
debug OpenMP.

Debugging an OpenMP Program

Debugging an OpenMP code is very similar to debugging a multithreaded
code, only differing in that the OpenMP compiler makes the following spe-
cial code transformations:

m The most visible transformation is outlining. The compiler pulls the body
of a PARALLEL region out of the original routine and places it into an out-
lined routine. In some cases, the compiler will generate multiple outlined
routines from a single PARALLEL region. This allows multiple threads to
execute the PARALLEL region.

The outlined routine’s name is based on the original routine’s name.
m The compiler inserts calls to the OpenMP runtime library.

B The compiler splits variables between the original routine and the out-
lined routine. Normally, shared variables are maintained in the master
thread’s original routine, and private variables are maintained in the out-
lined routine.

m The master thread creates threads to share the work load. As the master
thread begins to execute a parallel region in the OpenMP code, it creates
the worker threads, dispatches them to the outlined routine, and then
calls the outlined routine itself.

TotalView makes these transformations visible in the debugging session.
Here are some things you should know:

B The compiler will generate multiple outlined routines from a single paral-
lel region. This means that a single line of source code can generate mul-
tiple blocks of machine code inside different functions.

90 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications

If you set a breakpoint on a source line that results in multiple outlined

routines, TotalView asks you to differentiate the function name using the
ambiguous source line selection dialog box. In most cases, you will select
the All button to operate on all instances of the outlined functions.

B You cannot single step into or out of a parallel region. Instead, set a
breakpoint inside the parallel region and allow the process to run to it.
Once inside a parallel region, you can single step within it.

B OpenMP programs are multithreaded programs, so the rules for debug-
ging multithreaded programs apply.

Figure 40 shows a sample OpenMP debugging session.
Notice the following:

m On Compaq Tru64 UNIX, the OpenMP threads are implemented by the
compiler as pthreads, and on SGI IRIX as sprocs. TotalView shows the
threads’ logical and/or system thread ID, not the OpenMP thread number.

m The OpenMP master thread has logical thread ID number 1. The OpenMP
worker threads have a logical thread ID number greater than 1.

B In Compaq Tru64 UNIX, the system manager threads have a negative
thread ID; they do not take part in your OpenMP program, so do not
touch them.

B SGI OpenMP uses the SIGTERM signal to terminate threads. Because
TotalView stops a process when the process receives a SIGTERM, the
OpenMP process will not be terminated. If you want the OpenMP process
to terminate instead of stop, set the default action for the SIGTERM sig-
nal to Resend.

®m When the OpenMP master thread is stopped in a PARALLEL DO outlined
routine, the stack backtrace shows the following call sequence:

» The outlined routine called from.
» The OpenMP run time library called from.
» The original routine (containing the parallel region).

m When the OpenMP worker threads are stopped in a PARALLEL DO out-~
lined routine, the stack backtrace shows the following call sequence:

» Outlined routine called from the special stack parent token line.
» The OpenMP run time library called from.

m Select or dive on the stack parent token line to view the original routine’s
stack frame in the OpenMP master thread.

TotalView User's Guide

91

5 Setting Up Parallel Debugging Sessions
_ Debugging OpenMP Applications

$SS N SEE Alpha TotalView 3K.9.0-3 @SS NSSNE

=4 1673 T onp_simple (8 threads)
————1 T in _25_compute_pi_

T in (25 compute pi_
T in _25_conpute_pi_
T in “25_conpute_pi_
T in rocn_thread_block
T in hstTransferRegisters
T in hstTransferRegt sters
T in hstTransferRegisters

o0—
o—
o—

|

=———————Frocess 11673; ump_sgplre/(Stupped) @ﬁgj ’
{00 Thread 11673, L-the_sinple ¢Stapeed: IMMIMBATMIIMImImN | 483
o—hﬂﬂlIIIIIIIIIIIIIIIIIIIIIIIII Stack Traceﬂlﬂ“ﬂlﬁllllllllllllllllll IG5 =ck. Frane NNMBHET00
]

o pi FP= | Function *_25_copfute pi_":
OtsEnterParallelOpentP, FP=11fffef| No arguments D
onpute_pi_. FP=11fffef70 Local variablés:

Tfé!.;m, =——————— Frocess LJE73! op_sinple Mtopped) —oooo= | (A F2I
Thraaﬁ/11573.2t ﬂmp_;xﬁple {5topped) ‘@

Stack Trgz{e Stack Frame

Ite_| BB Function "_25_compute_pi_"t
=D compute_pi_ Mo arguments,
slave_main, FP=140535a28 Local wariables:
RO thdBase, FP=140535a78 sum (F23; 32, 76331933218551
- i: 251 {0x000000F b}

i,
{thread 13

call om
call om

Regizters for the frame:

C30HP PARALLEL SH Y0 0540080040 (5IEI2EE208)

myid = :

OMP DO i TO: 0x00000000 (0}

ConPe REDgETIDN(Function _25_compute_pi_ in omp_simple,f
o 1=

call omp_set_num_threads (4}
call omp_set_dunamic (.false.)

¥ =
sum :
if {
c|
end
enddo
C$0MP END DD
C$0MP END PARALLE|

: | CSOMP PARALLEL SHARED{w}
myid = omp_get_thread_num{}
C$0HP 10
CH0MPE REDUCTION(+: sum)
doi=1,n
x = w# Ci- 0,.5d0)

pi=w
print. # sum = sum + f(x)
stop iF {1 Leq, BOOD then
end call crash
end if
35 enddo

Threads| 35 | CH0MP END IO

27 | C$0MP END PARALLEL

pi = uw % zum

print %, “computed pi = 7, pi

: stop
end
42
Threads (§) S=——=|=————"Hction Points
. i
T
4T in _25_compute_pi_ E3RE L
mgr[-11 T in nxm_thread_block HX
©® OpenMP master thread @ “Original” routine name
® OpenMP worker threads (6] Stack parent token. Select
® Manager threads or dive to view master
(do not touch) ® "Outlined” routine name

® Master thread Process Window ® Worker thread process

FIGURE 40: Sample OpenMP Debugging Session

OpenMP Private and Shared Variables

TotalView allows you to view both OpenMP private and shared variables.

OpenMP private variables are maintained in the outlined routine, and are
stored by the compiler like local variables. See "Displaying Local Variables and

TotalView User’s Guide Version 4.1

Version 4.1

0_

®

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications

Registers” on page 143. However, OpenMP shared variables are maintained in
the master thread'’s original routine stack frame.

TotalView allows you to display shared variables through a Process Window
focused on the OpenMP master thread or through one of the OpenMP
worker threads.

Here is how you display an OpenMP shared variable:

1 Select the outlined routine in the Stack Trace Pane, or in the OpenMP
master thread, select the original routine stack frame.

2 Dive on the variable name, or display the Function/File/Variable menu
and issue the Variable... command. When prompted, enter the vari-
able name.

TotalView will open a Variable Window displaying the value of the OpenMP
shared variable, as shown in Figure 41.

Shared variables are stored on the OpenMP master thread’s stack. When
displaying shared variables in OpenMP worker threads, TotalView uses the
stack context of the OpenMP master thread to find the shared variable.
TotalView uses the OpenMP master thread’s context in the resulting Variable
Window to display the shared variable.

You can also view OpenMP shared variables in the Stack Frame Pane by se-
lecting the original routine stack frame in the OpenMP master thread, or by
selecting the stack parent token line in the Stack Trace Pane of OpenMP
worker threads, as shown in Figure 41.

I conpute_pi_sw (20679, 13 IMHNNNNNHITI0Hnmmm

(at On11fFFefid) Tupe: real#d
Value; 0,001
Process 206791 omp_sinple {Stopped) Siia—ia——o— @3‘_&}[@
2] T)
5_conpute_pi_, = Function “compute_pi_";
itsEnterParal lelOpentP, Ho arguments,
& pi_, T Local variables:
FP=: 00 al 2,17187630448244e-311
__start, FP=11fFF010 pis 2,38724324509567e-314
Sumd 0
g s
it 1023 {0x00000ZFF)
H 1000 {Ox000003e8)
Common blocks:
fred_s {Common)
X <

© OpenMP shared variables have master thread’s context
Original routine’s stack frame selected
© Stack Frame Pane includes shared variables

FIGURE 41: OpenMP Shared Variable

TotalView User's Guide 93

5 Setting Up Parallel Debugging Sessions
_ Debugging OpenMP Applications

OpenMP THREADPRIVATE Common Blocks

The Compaq Tru64 UNIX OpenMP and SGI IRIX compilers implement
OpenMP THREADPRIVATE common blocks using the thread local storage
system facility. This facility stores a variable declared in OpenMP THREAD-
PRIVATE common blocks at different memory locations for each thread in
an OpenMP process, which allows the variable to have different values in
each thread.

To view a variable in an OpenMP THREADPRIVATE common block, or the
OpenMP THREADPRIVATE common block itself, do the following:

1 In the Thread List Pane of the Process Window, select the thread con-
taining the private copy of the variable or common block you would
like to view.

2 In the Stack Trace Pane of the Process Window, select the stack frame
that will allow you to access OpenMP THREADPRIVATE common
block variable. You can select either the outlined routine or the origi-
nal routine for an OpenMP master thread. You must, however, select
the outlined routine for an OpenMP worker thread.

3 From the Process Window, dive on the variable name or common
block name. Or, display the Function/File/Variable menu and issue the
Variable... command. When prompted, enter the name of the variable
or common block. You may need to append an underscore (_) after
the common block name. See "Displaying Variable Windows” on page 143
for more information on how to display variables.

TotalView opens a Variable Window displaying the value of the variable or
common block for the selected thread.

4 To view OpenMP THREADPRIVATE common blocks or variables
across all threads, you can use the Toggle Thread Laminated Display
command in the Variable Window. See “Displaying a Variable in All Pro-
cesses or Threads” on page 180.

Figure 42 shows Variable Windows displaying OpenMP THREADPRIVATE
variables and common blocks. Because the Variable Window has the same
thread context as the Process Window from which it was created, the title
bar patterns for the same thread match. In the laminated views, the values
of the variable or common block across all threads are displayed.

94 TotalView User’s Guide Version 4.1

Version 4.1

0_ TR fred_.myid {20879.1% NUNMmnnamaniinn
[

Setting Up Parallel Debugging Sessions

{at 0

xL40080208) Tupe: integerkd

Walue:

0 {0x00000000)

2}

@,—‘II fred_.myid {20679 Laminated? IINNNINNMHNNIRNMHNNN0
3

fred_.myid {20679.2}

{at 0x14008cedB) Type: integersd

I

Walue: 1 {0x00000001)

<

{hult:

iple} Typet integerxd

Thread
1

2
3
4

Yalue

{at 0x14008celBr 0 {0x00000000)
{at 0x1400BcedB) 1 (0=00000001)
{at 0x14008ceB3) 2 {0x00000002)
{at 0x1400BceB88) 3 (0x00000003)

Fred_ (20679 Laminated)

tHultiple) Tupe: structure/fred./

Field Tupe Value

ooO0e

Thread 1 (at. 0140080200
x real#g 0, 000!
integerkd 0 00000000
{at 0x14008ced0;
x real¥d , 2505
myid integerkd 1 4000000001 3
Thread 3 (at. Ox14008ce60)
x real#g 0,5005
integerkd 2 Uoc00000002)
{at 0x14008ce80)

yid
Thread 2

yid
Thread 4

Variable from thread 1
Variable from thread 2

Thread laminated view of a single variable

Debugging OpenMP Applications

Thread laminated view of the entire common block

FIGURE 42: OpenMP THREADPRIVATE Common Block Variables

OpenMP Stack Parent Token Line

TotalView inserts a special stack parent token line in the Stack Trace Pane of
OpenMP worker threads when they are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Window
switches to the OpenMP master thread, allowing you to see the stack con-
text of the OpenMP worker thread's routine. This context includes the

OpenMP shared variables. (See Figure 43.)

You can select or dive on the OpenMP stack parent token line indicated by
the PC arrow.

TotalView User's Guide

95

5 Setting Up Parallel Debugging Sessions
_ Debugging PVM and DPVM Applications

Process 11673: omp_simple (Stopped)
Thread 11673,2% omp_simple (Stopped)

Stack Trace Stack Frame
77| _25_compute_pi_, FP=140535345 |iIATenat " _20_compute_pi_"y
E=> compute_pi_ {thread 1} Mo arguments.
slave_main, FP=140535a28 Local wariables:

thdBase. FP=140535a75 sum (F2h; 3,76381939218551
i3 251 (0x000000Fb}

Registers for the frams:

FIGURE 43: OpenMP Stack Parent Token Line

Debugging PVM and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM) li-
brary or the Compaq Tru64 UNIX Parallel Virtual Machine (DPVM) library with
Totalview on some platforms. TotalView supports ORNL PVM 3.3.4 or later
on the Compagq Alpha, Hewlett-Packard, Sun 5, RS/6000, and SGI IRIX plat-
forms and DPVM 1.4 or later on the Compaq Alpha platform.

NOTE See the TotalView Release Notes for the most up-to-date information regard-
ing your PVM or DPVM software.

When you debug a PYM or DPVM application, TotalView becomes a PYM
tasker, which establishes a debugging context for the duration of your ses-
sion. You can run:

m One TotalView PVM or DPVM debugging session for a user and for an ar-
chitecture; that is, different users cannot interfere with each other on the
same machine or same machine architecture.

One user can start TotalView to debug the same PVM or DPVM application
on different machine architectures. However, a single user cannot have
multiple instances of TotalView debugging the same PVM or DPVM ses-
sion on a single machine architecture.

For example, suppose you start a PVM session on Sun 5 and Compaq
Alpha machines. You must start two TotalView sessions: one on the Sun 5
machine to debug the Sun 5 portion of the PVM session, and one on the
Compaq Alpha machine to debug the Compaq Alpha portion of the PVM
session. These two TotalView sessions are separate and do not interfere
with one another.

96 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications

m Similarly, in one TotalView session, you can run either a PVM application
or a DPVM application, but not both. However, if you run TotalView on a
Compaq Alpha, you can have two TotalView sessions, one debugging PVM
and one debugging DPVM.

Setting Up ORNL PVM Debugging

To enable PVM, create a symbolic link from the PYM bin directory (which is
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr) to the TotalView Debugger Server
(tvdsvr).With this link in place, TotalView can use the pvm_spawn() call to
spawn the tvdsvr tasks.

For example, if tvdsvr is installed in the /opt/totalview/bin directory, enter
the following command:

In -s /opt/totalview/bin/tvdsvr \
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link does not exist, TotalView cannot spawn the debugger
server and displays the following error:

Error spawning TotalView Debugger Server: No such file

Starting an ORNL PVM Session

Start the ORNL PVM daemon process before you start TotalView. See the
ORNL PVM documentation for information about the PVYM daemon process
and console program.

1 Use the pvm command to start a PVYM console session, which will
start the PVM daemon. If PVYM is not running when you start TotalView
(with PVM support enabled), TotalView exits with the following mes-
sage:

Fatal error: Error enrolling as PVM task: pvm error

2 If your application uses groups, start the pvmgs process before start-
ing TotalView. PVM groups are unrelated to TotalView process groups.
For information about TotalView process groups, refer to “Examining
Process Groups” on page 124.

3 Enable PVM support in TotalView using an X resource; see “TOTAL-
VIEW* PYMDEBUGGING” on page 288. You need to restart TotalView after
setting this new resource. For more information, refer to "X Resources”
on page 275.

TotalView User's Guide

97

5 Setting Up Parallel Debugging Sessions
_ Debugging PVM and DPVM Applications

As an alternative, you can use command line options to the totalview
command. For example:

—pvm which enables PVM support
—no_pvm which disables PVM support

The command-line options override the X resource. For more information
on the totalview command, refer to “TotalView Command Syntax” on page
299.

4 Set the TotalView directory search path to include the PVM directo-
ries. This directory list must include those needed to find both exe-
cutable and source files. The directories you use will vary, but should
always contain the current directory and your home directory.

You can set the directory search path using an X resource or the Set
Search Directory command. Refer to "TOTALVIEW* SEARCHPATH” on page
289 and "Setting Search Paths” on page 44 for more information.

For example, to debug the PVYM examples, you can specify the following
list of directories in your search path:

$HOME

$PVM_ROQT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROQT/src
$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$8PVM_ARCH
$PVM_ROQT/examples
$PVM_ROQT/examples/$PVM_ARCH
$PVM_ROQOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5 Verify that the action taken by TotalView for the SIGTERM signal is

appropriate. (You can examine the current action using the Set Signal
Handling Mode command. Refer to “"Handling Signals” on page 41 for
more information.)
PVM uses the SIGTERM signal to terminate processes. Because TotalView
stops a process when the process receives a SIGTERM, the OpenMP pro-
cess is not terminated. If you want the PVM process to terminate, set the
action for the SIGTERM signal to Resend.

Continue with “PVM/DPVM Automatic Process Acquisition” on page 100.

98 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications

Starting a DPVM Session

DPVM requires no additional user configuration. However, you must start
the DPVM daemon before you start TotalView. See the DPVM documentation
for information about the DPVYM daemon and console program.

1 Use the dpvm command to start a DPVM console session; starting the
session also starts the DPVM daemon. If DPVM is not running when
you start TotalView (with DPVM support enabled), TotalView exits with
the following message:

Fatal error: Error enrolling as DPVM task: apvm error

2 You can enable Enable DPVM support in two ways. The first uses an X
resource; see “TOTALVIEW* DPVMDEBUGGING” on page 281. You'll need
to restart TotalView after setting (or resetting) an X resource.

As an alternative, you can use command line options to the totalview
command. For example:

—dpvm which enables DPVM support.

—no_dpvm which disables DPVM support

The command-line options override the X resource. For more information
on the totalview command, refer to “TotalView Command Syntax” on page
299.

3 Verify that the default action taken by TotalView for the SIGTERM sig-
nal is appropriate. You can examine the default actions with the Set
Signal Handling Mode command in TotalView. Refer to “Handling Sig-
nals” on page 41 for more information.

DPVM uses the SIGTERM signal to terminate processes. Because the
debugger stops a process when the process receives a SIGTERM, the
OpenMP process is not terminated. If you want the DPVM process to ter-
minate, set the action for the SIGTERM signal to Resend.

If you enable PVM support using X resources, and you wish to use DPVM,
you must use both

—-no_pvm and —dpvm command line options when you start TotalView. Sim-
ilarly, when enabling DPVM support with X resources, use the -no_dpvm
and —pvm command line options to debug PVM.

NOTE Do not use X resources to start both PVYM and DPVM.

TotalView User's Guide

99

5 Setting Up Parallel Debugging Sessions
_ Debugging PVM and DPVM Applications

PVM/DPVM Automatic Process Acquisition

This section describes how TotalView automatically acquires PYM and DPVM
processes in a PVM or DPVM debugging session. Specifically TotalView uses
the PVM tasker feature to intercept pvm_spawn() calls.

When you start TotalView as part of a PYM or DPVM debugging session, it
takes the following actions:

B TotalView checks to make sure there are no other PVM or DPVM taskers
running. If TotalView finds a tasker on any host that it is debugging, it dis-
plays the following message and then exits:

Fatal error; A PVM tasker is already running on host 'host

m TotalView finds all the hosts in the PVM or DPVM configuration. Using the
pvm_spawn() call, TotalView starts a TotalView Debugger Server (tvdsvr)
on each remote host that has the same architecture type as the host on
which TotalView is running. It tells you it has started a debugger server by
printing:

Spawning TotalView Debugger Server onto PVM host 'host

If you add a host with a compatible machine architecture to your PYM or
DPVM debugging session after you start TotalView, TotalView automatically
starts a debugger server on that host.

After all debugger servers are running, TotalView will intercept every PVM or
DPVM task created using the pvm_spawn() call on hosts that are part of the
debugging session. If a PVM or DPVM task is created on a host with a differ-
ent machine architecture, TotalView ignores that task.

When TotalView receives a PVYM or DPVM tasker event, it takes the following
actions:

1 TotalView reads the symbol table of the spawned executable.

2 1f a saved breakpoints file for the executable exists and you have
automatic loading of breakpoints enabled, TotalView loads break-
points for the process.

3 TotalView asks if you want to stop the process before it enters the
main() routine.

If you answer Yes, TotalView stops the process before it enters main()
(that is before it executes any user code). This allows you to set break-

100 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications

points in the spawned process before any user code executes. On most
machines, TotalView stops a process in the start() routine of the crt0.o
module if it is statically linked. If the process is dynamically linked, the
debugger stops it just after it finishes running the dynamic linker. Because
the Process Window displays assembler instructions, you will need to use
the Function or File command to display the source code for the main()
routine. For more information on this command, refer to “Finding the
Source Code for Functions” on page 115.

Attaching to PVM/DPVM Tasks

You can attach to a PVM or DPVM task if the task meets the following crite-
ria:

B The machine architecture on which the task is running is the same as the
machine architecture on which TotalView is running.

m The task must be created. (This is indicated when flag 4 is set in the PVM
Tasks and Configuration Window:)

m The task must not be a PVM tasker. If flag 400 is clear in the PVM Tasks and
Configuration Window, the process is a tasker.

m The executable name must be known. If the executable name s listed as a
dash (-), TotalView cannot determine the name of the executable. (This
can occur if a task was not created using the pvm_spawn() call.)

To attach to a PVYM or DPVM task, complete the following steps:

1 Issue the Show All PVM Tasks command from the TotalView Root Win-
dow.

The PVM Tasks And Configuration Window is displayed, as shown in
Figure 44. This window displays current information about PVM tasks and
hosts—TotalView automatically updates this information as it receives
events from PVM.

Since PVM does not always generate an event that allows TotalView to
update this window, you should use the Update PVM Task List command
to update it when you need current information.

For example, you can attach to the tasks named xep and mtile in the fol-
lowing figure because flag 4 is set. In contrast, you cannot attach to the
tvdsvr and — executables because flag 400 is set.

2 Dive on a task entry that meets the criteria for attaching to tasks.
TotalView attaches to the task.

TotalView User's Guide

101

5 Setting Up Parallel Debugging Sessions
_ Debugging PVM and DPVM Applications

3 If the task to which you attached has related tasks that can be
debugged, TotalView asks if you want to attach to these related tasks.
If you answer Yes, TotalView attaches to them. If you answer No, it
only attaches to the task you dove on.

After attaching to a task, TotalView looks for attached tasks that are related

to the this task; if there are related tasks, TotalView places them in the same

program group. If TotalView is already attached to a task you dove on, it sim-

ply opens and raises the Process Window for the task. (See Figure 44.)

1) ? 13}
[s sSSP Tasks and Conflouration @0 S use Sag

HEST TID FTID PID FLAG EXECUTHELE ﬁ
winnie 40001 0 5228 4 -
vinnie 40005 40001 h234 E xep
winnie 40008 40005 5290 B mtile
albacare 0006 40005 2929 B mtile
(45 izzy cOno? 40005 1644 B nmtile
alfie 100002 40005 20267 B mtile
swordfish 140002 40005 12214 B mtile
plum 180002 40005 25550 B mtile
albacare Bo007 0 2540 404 -

winnie 40007 BO0GY 5296 405 tudsur

HOST ITID ARCH SPEED
albacore 20000 SUN450LZ 1000
O alfie 100000 ALFHA 1000

izzy 0000 SUH4 1000

plum 180000 SGIE4 1000
swordfish 140000 ALPHA 1000
vinnie 40000 SUN4SIUL2 1000

°© o

<

O Task ID (TID) ©® Hosts

® Parent TID ® DaemonTID

® UNIX Process ID (PID) @ Machine Architecture
O Tasks

FIGURE 44: PVM Tasks and Configuration Window

Reserved Message Tags: TotalView uses PVM message tags in the
range 0xDEBO through OXDEBF to communicate with PYM daemons and the
TotalView Debugger Server. Avoid sending messages that use these reserved
tags.

Debugging Dynamic Libraries: If the machines in your PVM de-
bugging session are running different versions of the same operating sys-

102 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Shared Memory Code

tem, the dynamic libraries can vary from machine to machine. If this is the
case, you may see strange stack backtrace results when your program is ex-
ecuting inside a dynamic library. To eliminate this problem, make sure all of
the hosts in your PVM configuration are running the same version of the op-
erating system and have the same dynamic libraries installed. As an alterna-
tive, you can statically link your programs.

Cleanup of Processes: The pvmgs process registers its task ID in the
PVM database. If the pvmgs process is terminated, the pvm_joingroup()
routine hangs because PVM does not clean up the database. If this hap-
pens, you must terminate and then restart the PYM daemon.

TotalView attempts to clean up the TotalView Debugger Server daemons
(tvdsvr), which also act as taskers. If some of these processes do not termi-
nate, you must manually terminate them.

Shared Memory Code

Version 4.1

TotalView supports the SGI IRIX logically shared, distributed memory access
(SHMEM) library.

To debug a SHMEM program, follow these steps:

1 Link it with the dbfork library. See “Linking with the dbfork Library” on page
324.

2 Start TotalView on your program. See Chapter 3, “Setting Up a Debugging
Session” on page 29.

3 Set at least one breakpoint after the call to the start_pes() SHMEM
routine. (This is illustrated in the following figure.)

The call to start_pes() creates new worker processes that return from the

start_pes() call and execute the remainder of your program. The original

process never returns from start_pes(), but instead stays in that routine,

waiting for the worker processes it created to terminate.

NOTE You cannot single-step over the call to start_pes().

TotalView User's Guide

103

5 Setting Up Parallel Debugging Sessions
_ Debugging Portland Group, Inc. HPF Applications

ST IRING MIPS TotalView 3,9,0-3 SSS s gs
39205 T shmen {in __uaitsus}
39124 £l shmem.1 {in reduction_}
30904 P11 shmem.2 {in reduction)
39180 F1 shmem.3 {in reduction_}
38333 11 shmen.d (in reduction)
[Process 38904: shmen.? e
) Theead 38304,13 shmem, 2

(Ol

e~ il

Function "reduction_ "3
(3] o arqunents.
Local wariablesy
it -1 {OFFFFFFFEY
sumy 1,73794e-310
work: 0
IR Function reduction_ in shnen. £30 INITMIMTRITTTTTTMTT0IT
REAL WALUES, SUH [
COMMON #C# WALLES
REAL WORK
CALL START_PES{4}
e WALLES = HY_PEC}
CALL SHMEM_BARRIER_ALL ! Synchronize all PEs
M = 0.0
001 =0,3 ! NUM_PES(X-1 |
Thread {1} [fiction Points
T: 1 line 15 at reduction_+0x28 in "shne 'g
- [

SHMEM starter process

SHMEM worker processes

Select a worker process in the Root Window
Set breakpoint after the call to start_pes()

CoO0e

FIGURE 45: SHMEM Sample Session

Debugging Portland Group, Inc. HPF Applications

TotalView allows the source level debugging of High Performance Fortran
(HPF) code compiled with the Portland Group Inc. HPF (PGI HPF) compiler.

NOTE Debugging PGI HPF programs requires a separate TotalView license.

TotalView supports the following platforms:

m [BM RS/6000 and SP AIX 4.x
m SGIMIPS IRIX 6.x, for programs compiled with —64 only
B Sun Sparc SunQOS 5 (Solaris 2.x)

See the TOTALVIEW RELEASE NOTES for supported PGI HPF runtime configu-
rations.

In addition to normal TotalView features, the TotalView PGI HPF support al-
lows:

m Source level display of HPF code.
m Source level breakpoints in HPF code.

104 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc. HPF Applications

B You can update replicated scalar variables in all processes by updating
the value in any process. If the values were not all the same at the start,
TotalView gives you a warning, and you have to explicitly agree to the
update before it will take place.

m Display of distributed arrays, with optional display of the owning proces-
sof.

m Display of the distribution of distributed arrays, for instance, onto which
node a particular element of a distributed array has been mapped.

B Visualization of distributed arrays.
B Automatic update of all copies of replicated scalar variables.

However, there are still a number of limitations:

m Display of user defined data types is not yet supported.

m Evaluation points and expressions are executed locally and cannot refer-
ence distributed arrays. However, you can use the $visualize intrinsic.

If you use the $visualize EVAL intrinsic, remember that EVAL code is exe-

cuted by every process. Therefore, you probably want to make this an non-

shared action point.

B You can export the distribution of an array to the visualizer to display it
graphically.

B You see the HPF source and variables.

B You can set breakpoints in the HPF source code.

In the address display for data windows showing HPF variables, there is an
additional field which tells you whether the variable is distributed [Dist] or
replicated [Repl]. If you update a replicated variable, it is updated in all pro-
cesses. A distributed variable is only updated in its home process.

You cannot edit the address of a distributed array. If you edit the address of
a replicated scalar, it will be marked as distributed, since it no longer makes
sense to update all of the processes, as you do not know what is at that ad-
dress in the other processes.

When you display an HPF distributed array, TotalView can also display the
logical processor on which each element resides. The display of this addi-
tional information can be changed for a single data window using the

Toggle Node Display option in the menu of the data window. You can set

TotalView User's Guide

105

5 Setting Up Parallel Debugging Sessions
_ Debugging Portland Group, Inc. HPF Applications

the default for a whole TotalView session by using the command line options
—hpf_node or—no_hpf node; you could also use the X resource “TOTAL-
VIEW*HPFNODE” ON PAGE 283. No matter which way you set the default, you
can always toggle the behavior in each window.

By default, this display is disabled. If it is enabled, a distributed array will
look like Figure 46. Otherwise, the Node column is not displayed and a dis-
tributed array display looks the same as that of a normal array.

black_white {3651,1)

{Multiple) [Dist] Type: logical#d{:, i} ii
Actual Type: logical#4{B4, 64}
Slice: (1:1,::8)
Filter:

Index Hode Yalue

(1,1)

(1,9}

(1,17}
(1,25
(1,33}
(1,410
(1,43
(1,570

Jfalse, (0}
Jfalse, (0}
Jfalse, (0}
Jfalse, (0}
Jfalse, (0}
Jfalse, (0}
Jfalse, (0}
Jfalse, (0} Iy

0
0
0
0
1
1
1
1

FIGURE 46: Block Distributed Array on Three Processes

To see the distribution of an array or a section of an array, use the Visualize
Distribution command from the data window menu. This command exports
the HPF processor number on which each selected element of the array re-
sides to the visualizer. This command differs from the Visualize commandin
that it exports the values of the array elements, not the ownership informa-
tion.

This capability is not available with the $visualize command since distribu-
tions are normally static.

Starting TotalView with HPF

Beginning with PGI HPF release 2.4, TotalView can track a process started by
rpm or smp, the default PGI HPF runtime libraries. If you still want to use
MPI, then you need to ensure that the MPI implementation is supported by
PGI HPF and TotalView. See “Debugging MPI Applications” on page 69.

106 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc. HPF Applications

On IBM SP, or clusters of RS/6000 machines running IBM's Parallel Environ-
ment, you can use any runtime library that is started using the poe com-
mand.

On SGI IRIX, TotalView supports 64-bit PGl HPF programs only. You must
compile your PGI HPF program with the —-64 compiler option.

Dynamically Loaded Library
To debug PGI HPF code, TotalView needs to be able to dynamically load the

file libtvhpf.so, which is distributed as part of the PGI HPF product.

TotalView searches for this file in the following order:

1

TotalView attempts to dynamically load the unadorned file name
libtvhpf.so. This will succeed if libtvhpf.so is in one of the directories
on your dynamic library path environment variable (on Sun Sparc
SunOS5, IBM AIX, and SGI IRIX, this is LD_LIBRARY PATH if the vari-
able LD_LIBRARYN32 PATH is not set). On SGI IRIX, libtvhpf.so is in
one of the directories on your —-n32 dynamic loader path
(LD_LIBRARYN32 PATH).

If step 1 fails, TotalView uses the PGl environment variable to find the
Portland Group installation. If the PGI environment variable is not set,
TotalView looks for the default installation directory (/usr/pgi).

Depending on your architecture, TotalView then searches the directo-
ries in the order shown in the following table.

TABLE 9: PGI HPF Dynamic Library Search Order

System Search Path
IBM RS/6000 and SP AIX 4.x SPGl/sp2/lib
SPGl/rs6000/lib
Sun Sparc SunOS 5 (Solaris 2.x) SPGl/solaris/lib
SGI MIPS IRIX 6.x SPGl/sgi/lib-n32

SPGl/sgi/lib—64
SPGl/origin/lib/mips4

If TotalView still cannot locate a copy of libtvhpf.so and, if the TotalView ver-
bosity level is not silent, an error message is displayed telling you that the li-

TotalView User's Guide

107

108

5 Setting Up Parallel Debugging Sessions
_ Debugging Portland Group, Inc. HPF Applications

brary could not be found, HPF debugging is disabled. TotalView will then
start debugging the generated Fortran code.

If TotalView cannot find your copy of libtvhpf.so, you should either move it
to one of the places that will be searched by default, or add its directory to
your LD_LIBRARY PATH.

Setting Up PGI HPF Compiler Defaults

NOTE With PGI HPF version 2.4 and later, there is no need to use an MPICH based
runtime, and you can ignore this section.

Set up the HPF compiler with the defaults set for using MPICH, TotalView,
the IBM parallel environment, and FORTRAN 77, as in the following sections.

If you have PGI HPF release 2.4, the rc files should already have been set up
correctly, but they will use the default runtime, which is not MPI. If you want
to use an MPI runtime, you should consult the PGI HPF manuals.

Setting Up MPICH

You should follow the instructions in the PGI HPF manual and MPICH man-
ual to ensure that you can build an HPF program and run it using MPICH.
One way to do this is to create your own .pghpfrc file and add lines similar
to the following:

Set up to use my MPI with PGl HPE

Change the path to libmpi.a as appropriate

#

INCLUDE $DRIVER/. pghpfrc

set HPF_MPI=/where_your mpi_lives/libmpi.a

set HPF_COMM LIBS= \

"Ipghpf mpi$P $HPF_MPI $HPF SOCKET"

Because these lines tell pghpf to use the MPI communications library, you
do not need to name them on the command line at compilation time.

Setting TotalView Defaults for HPF

To debug HPF code, you will normally set the breakpoint and barrier break-
point behavior so that TotalView does not stop other processes when the

TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc. HPF Applications

breakpoint is hit. For more information, refer to “Parallel Debugging Tips” on
page 110.

Other HPF resources are "TOTALVIEW*HPF” on page 283 and "TOTAL-
VIEW*HPFNODE” ON PAGE 283.

Compiling HPF for Debugging

To compile your HPF PROGRAM so it can be used with TotalView, you should
use the —g and -Mtotalview options to pghpf when both compiling and
linking. (The -Mtv option is the same as the —~Mtotalview option.)

The —g option can produce confusing results when used by itself. For exam-
ple, while you may see the HPF source code, none of the HPF debugging fea-
tures will work. If TotalView flags your HPF code in the stack backtrace as
being 77, the program was probably not compiled with the -Mtv option.

If you want to debug the Fortran code generated by HPF, you must also use
the —~Mkeepftn option. Otherwise, the compiler deletes these intermediate
Fortran files after it compiles the source code.

You can debug at the generated Fortran level by starting TotalView with the
—no_hpf option or setting the X resource totalview*hpf to false. TotalView
will then ignore the .stb and .stx files and show you the generated F77.

There is no need to relink the HPF program to debug at the generated For-
tran level.

Starting HPF Programs

The way in which TotalView starts an HPF parallel program depends on the
machine on which the code is running and the run time library linked into
the HPF code.

PGl HPF smp and rpm libraries

Using TotalView to start a program linked with the smp and rpm libraries is
similar to the way in which you would normally start the program. For exam-
ple, suppose you would start the program as follows:

my_program —bah —pghpf —-np 6

TotalView User's Guide

109

5 Setting Up Parallel Debugging Sessions
_ Parallel Debugging Tips

Here is the command you would use to debug it using TotalView:

totalview my program —a —bah —pghpf -np 6

Starting HPF Programs with MPICH
In a workstation cluster environment using MPICH, debug your HPF applica-

tion with TotalView by adding the —tv option to the mpirun command. For
example, assume that you would begin executing your code with the follow-
ing command:

mpirun —np 4 my_program
Using mpirun, you would invoke TotalView as follows:

mpirun —tv -np 4 my_program

Workstation Clusters Using MPICH

Debugging workstation clusters uses the same mechanism as debugging an
MPICH program since a compiled HPF program is an MPICH program. For
more information, refer to “"Debugging MPI Applications” on page 69.

IBM Parallel Environment
In the IBM parallel environment on an IBM SP or cluster of RS/6000 ma-

chines, parallel programs are started with the poe command. To debug par-
allel codes, you invoke TotalView on the poe command, for instance:

totalview poe —a hpf test —procs 6

For more information, refer to “Starting TotalView on a PE Job” on page 77.

Parallel Debugging Tips

When you are debugging your parallel programs, the following points are im-
portant to remember.

General Parallel Debugging Tips

Here are some tips that are useful for debugging most parallel programs:

110 TotalView User’s Guide Version 4.1

Version 4.1

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips

® Breakpoint behavior

When you are debugging message-passing and other multiprocess pro-
grams, it is usually easier to understand the program'’s behavior if you
change the default stopping action of breakpoints and barrier break-
points. By default, when one process in a multiprocess program hits a
breakpoint, TotalView will stop all the other processes.

To change the default stopping action of breakpoints and barrier break-
points, you can set the X resources "TOTALVIEW*STOPALL” on page 292
and "TOTALVIEW* BARRIERSTOPALL" on page 278 to false.

A second method is to specify the —-no_stop_all TotalView command line
options described on page 309 and —no_barr_stop_all described on
page 301.

These settings set breakpoint and barrier breakpoint behavior to allow
other processes to continue to run when one process in a group hits the
breakpoint.

These options only affect the default behavior. As usual, you can choose
a behavior for a breakpoint by setting the breakpoint properties in the
action points dialog box. See “Breakpoints for Multiple Processes” on page
203.

Process synchronization

TotalView has two features that make it easier to get all of the processes
in a multiprocess program synchronized and executing the line.

Process barrier breakpoints and the process hold/release features work
together to help you get control the execution of your processes. See
“Process Barrier Breakpoints” on page 206.

The Run (to selection) Group command is a special kind of stepping
command. It allows you to run a group of processes to a selected source
line or instruction. See "Group-level Single Stepping” on page 131.

Using group commands

Group commands are often more useful than process commands.

It is often more useful to issue the Go Group command from the
Go/Halt/Step/Next/Hold menu to restart the whole application, rather
than use the Go Process command and then use the Halt Group com-
mand rather than the Halt Process command.

The group-level single-stepping commands such as Step Group and Next
Group allow you to single-step a group of processes in a parallel. See
“Group-level Single Stepping” on page 131.

TotalView User's Guide

111

5 Setting Up Parallel Debugging Sessions
_ Parallel Debugging Tips

® Process-level stepping

If you use a process-level single-stepping command in a multiprocess
program, TotalView may appear to be hung (it continuously displays the
watch cursor). If you single-step a process over a statement that cannot
complete without allowing another process to run and that process is
stopped, the stepping process appears to hang. In parallel programs, this
can occur when you try to single-step a process over a communication
operation that cannot complete without the participation of another pro-
cess. When this happens, you can abort the single-step operation by
pressing Ctrl-C in any TotalView window. As an alternative, consider using
a group-level single-step command instead.

® Determining which processes and threads are executing

The TotalView Root Window helps you determine where various processes
and threads are executing. When you select a line of code in the Process
Window, the Root Window is updated to give you visual feedback about
which processes and threads are executing that line. See "Displaying
Thread and Process Locations” on page 138.

m Viewing variable values

You can view the value of a variable that is replicated across multiple pro-
cesses or multiple threads in a single Variable Window. See “Displaying a
Variable in All Processes or Threads” on page 180.

B Restarting

You can restart a parallel program at any time during your debugging ses-
sion. If your program runs too far, you can kill the program by displaying
the Arguments/Create/Signal menu in the Process Window and selecting
the Delete Program command. This command kills the master process
and all the slave processes. Restarting the master process (for example,
mpirun or poe) recreates all of the slave processes. Start-up is faster
when you do this because TotalView does not need to reread the symbol
tables or restart its server processes as they are already running.

MPICH Debugging Tips

Here are some debugging tips that apply only to MPICH:
m Passing options to mpirun
You can pass options to TotalView through the MPICH mpirun command.

To pass options to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun to

112 TotalView User’s Guide Version 4.1

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips

invoke TotalView with the —no_stop_all option as in the following C-shell,
example:

setenv TOTALVIEW "totalview —no_stop_all"
m Using ch_p4

If you start remote processes with MPICH/ch_p4, you may need to
change the way TotalView starts the servers.

By default, TotalView uses rsh to start its remote server processes. This is
the same behavior as ch_p4. If you configure MPICH/ch_p4 to use a dif-
ferent start-up mechanism from another process, you will probably also
need to change the way that TotalView starts the servers.

For more information about tvdsvr and rsh, see “Single Process Server
Launch Options” on page 55. For more information about rsh, see “Single
Process Server Launch Command” on page 59.

IBM PE Debugging Tips

Here are some debugging tips that apply only to IBM MPI (PE):

m Avoid unwanted timeouts

You can cause undesired timeouts if you place breakpoints that stop
other process too soon after calling MPI_Init() or MPL_Init(). If you create
“stop all” breakpoints, it causes the first process to get to the breakpoint
to stop all the other parallel processes that have not yet arrived at the
breakpoint. This may cause a timeout.

To turn the option off, click with the right mouse button on the stop sym-
bol for the breakpoint. The breakpoint dialog box will come up, in which
you should deselect the box labeled “Stop All Related Processes when
Breakpoint Hit.”

m Control the poe process

Even though the poe process continues under TotalView control, you
should not attempt to start, stop, or otherwise interact with poe. The par-
allel tasks require that poe continue to run for normal functioning. For
this reason, if poe had been stopped, TotalView automatically continues
it when you continue any of the parallel tasks.

m Avoid slow processes due to node saturation

If you try to debug a Parallel Environment for AIX program in which more
than three parallel tasks are run on a single node, the parallel tasks on

Version 4.1 TotalView User's Guide 113

5 Setting Up Parallel Debugging Sessions
_ Parallel Debugging Tips

each such node may run noticeably slower than they would run if you
weren’t debugging them.

This effect becomes more noticeable as the number of tasks increases,
and, in some cases, the parallel tasks may make hardly any progress. This
is because the Parallel Environment for AIX uses the SIGALRM signal to
implement the communications operations, and the debugging interface
in AIX requires that the debugger intercept all signals. As the number of
parallel tasks on a node increases, the copy of TotalView or the TotalView
Debugger Server running on that node becomes saturated, and cannot
keep up with the SIGALRMs being sent, thus slowing down the tasks.

114 TotalView User’s Guide Version 4.1

Chapter 6

Debugging Programs

This chapter explains how to perform basic debugging tasks with TotalView. This
chapter explains how you:

B Find code as you are debugging

B Display your code in source and assembler formats
Return to the currently executing line in the stack frame
Invoke your editor on source files you are debugging
Interpret status and control registers

Use commands for controlling processes and threads
Control process groups in multiprocess programs

Set action points

Use single-step commands

Set the program counter

Finding the Source Code for Functions

You can search for the source code for any function in your program by
selecting the Function or File command from the Function/File/Variable
menu. Within the displayed dialog box, type the function name. (See
Figure 47 on page 116.)

After TotalView finds the source code, it displays it in the Source Code Pane.
If the function you selected was not compiled with source line information,
TotalView displays disassembled machine code.

NOTE When you want to return to the previous contents of the Source Code Pane,
use the undive icon located in the upper right corner of the source pane.

Version 4.1 TotalView User's Guide 115

Debugging Programs
m Finding the Source Code for Functions

Function to view, or filename to opend

FIGURE 47: Function Name Dialog Box

You can use the Edit Source Text command (see “Editing Source Text” on page
121 for details) or an X Window System client such as xmore, vi, or emacs to
display these files while debugging.

Another method of locating a function’s source code is by diving into its
from within the Source Code Pane.

Resolving Ambiguous Names

Sometimes the function name you specify is ambiguous. For example, you
may have specified the name of a static function and your program contains
multiple static functions by that same name. Alternatively, you may have
specified the name of a member function in a C++ program and there are
multiple classes with member functions of that name. Or, you may have
specified the name of an overloaded function or a template function.
Figure 48 shows an example of the dialog that TotalView displays when it en-
counters an ambiguous function name.

To resolve the ambiguity, click one of the radio buttons or the text following
it and then click OK. Alternately, you may type an unambiguous name in the
Function specification field.

When you select a function name, its specification appears in the Function
specification field. This allows you to enter a new function specification by
editing an existing one. When there are many screens of function names in
the dialog, this feature lets you specify a name without having to scroll to
find it.

Because TotalView remembers the resolved specification, you do not need
to select it again the next time you dive into the function.

116 TotalView User’s Guide Version 4.1

Debugging Programs

Finding the Source Code for Files

he function name you have specified is ambiguous,
leaze zelect one of the following,
I type in an unambiguous specification below,

3 mintdouble, double)
ftenplate, cxxih

O mindint, int)
fremplate, ool

Function specificationt

FIGURE 48: Resolving Ambiguous Function Names Dialog Box

TotalView may request that you set the context when you:

m Specify a function name with the Function or File command.
B Dive on a name in the Source Code Pane.

B Set a breakpoint at a line in the function.

m Select a function by clicking on its line in the Stack Trace Pane.

Finding the Source Code for Files

You can display the source code for a given file in your program by choosing
the Function/File/Variable menu and selecting the Function or File com-
mand. When prompted, enter the file name in the dialog box shown in
Figure 47. You may enter the name of a header file if the header file contains
source lines that produce executable code.

NOTE If TotalView determines that a file contains Fortran 90 code, functions, or sub-
routines defined earlier in the same source file may appear to be written in FORTRAN
77. This should not be a problem since these functions cannot be using Fortran 90
features.

Version 4.1 TotalView User's Guide 117

Debugging Programs
m Examining Source and Assembler Code

Examining Source and Assembler Code

You can display your program in several different ways. If you display assem-
bler in the Source Code Pane, you can also display addresses in two differ-
ent ways, as shown in Table 11.

TaBLE 10: Ways to Display Source and Assembler Code
Select This from the

To Display Display/Directory/ Edit menu ...
Source code (Default) Source Display Mode

Assembler code Assembler Display Mode
Source and assembler interleaved Interleave Display Mode. Source

statements are treated as comments.
You can set breakpoints or evaluation
points only at the machine level. Set-
ting an action point at the first instruc-
tion after a source statement, however,
is equivalent to setting a point at that
source statement.

You can tell TotalView to display assembler code using symbolic or absolute
addresses, as described in the following table:

TasLE 11: Assembler Code Display Styles
Select This from the
To Display Address Using Display/Directory/ Edit menu ...

Absolute addresses for locations and Display Assembler by Address
references (Default)

Symbolic addresses (function names Display Assembler Symbolically
and offsets) for locations and refer-
ences

The following three figures illustrate the effect of displaying assembler code
in different ways in the Source Code Pane. You can also display assembler
instructions in a Variable Window. For more information, see “Displaying
Machine Instructions” on page 147.

118 TotalView User’s Guide Version 4.1

Version 4.1

Debugging Programs

Examining Source and Assembler Code

Function .main in expr.c
010000281 0x38c70000 addi r&,r7,0
010000200 T 0x48000c71 bl Jprintf
Qx100002d0 s 080410014 1wz rtoc,20¢sp)
Qx100002d4 0xB062002c 1wz 3,44 {rtoc)
Q1000028 0x30630020 addic r3,r3,32
Ox100002dc 0:x48000c85 bl JFflush
010000201 080410014 luz rtoc, 20{sp)
o 01000024 £ 080610038 1wz r3,56{sp)
(10000228 0:480001ed bl Jfreetree
Ox100002ect 0:BOOOO000 nop
Oz 1000020 0x4800026d bl Jreadexpr
Oxl00002F4 1 OxBO000000 nop
Ol 000028y 0x30610038 stu r3,56(sp)
Ox100002f ¢y 080610038 1wz r3,596(sp)
Q100003001 028030000 cmplui r3. 0
Q10000304 1 Ox4082fF84 bre+ Ox10000288
Q10000308 1 038600000 11 r3,
Q1000030 048000004 b 0:x1PODOZ10
0100003101 0xB0010068 1wz r0,104{=p}
010000314 0x7c0803a6 ntlr ri
0x1q000318: 0x20210060 addic sp,3p. 96

o

!

O Gridget (dotted grid) indicates action point can be set

on an instruction

@ Location by absolute address
® References by absolute address

FIGURE 49: Address Only (Absolute Addresses)

Function ,main in expr,c
wmaire(iel s (32070000 addi rE.r7 0
Lmain+ieBe: 04800071 bl Lprintf
Lmairt(c30; (80410014 lwz rtoc, 20{sp?
Lmaire(edds (8062002c 1wz r3.44{rtoch
Jmairte38 s (30630020 addic r3.r3,32
wmair+iedcy (48000c85 bl JFflush
Lmairtal 080410014 lwz rtoc, 20{sp}
Lmainticad s 0xB0B10038 lwz r3.56{=p)
wmaireiealy (bed20001led bl frestres
Lmaintixact 0BOOMOON0 nop
Lmairbiy 0x4800026d bl Jreadexpr
Lmainiebdy OBOOMOONG nop
Lmainb8y (306100358 stu r3,.56¢sp)
Lmairtxbe: (80610038 1wz 3,56 {sp)
Lmairtcl: (028030000 cmplui r3.0
omaireiecd s (e4082f 84 bre+ Lmgin+(x48
Lmaire(ecBy (38600000 11 r340
wmaireeooy (ee42000004 b wmgire+0dd)
Lmaimedis 0B0010068 lwz o 104{sp)
Jmalreiedd s (7080326 mtlr ri
Lmalmeeddy (30210060 addic spfsp.96

O Location by function and offsets
@ References by function and offsets

FIGURE 50: Assembler Only (Symbolic Addresses)

TotalView User's Guide

119

Debugging Programs
m Current Stack Frame

Function .main in expr,c
Q10000200 030410014 luz rtoc,200sp}
B fflush (stdouti:
Ox100002d4 ¢ (xB0B2002c 1wz r3,44{rtock
010000248 ¢ Ox30630020 addic r3,r3, 52
Ox100002dc s Ox48000c85 bl fflush
010000220t 0x30410014 1wz rtoc,20(sp}
B freetree (noder:
(10000264 ¢ 0xB0B10038 luz r3,56{=p}
(x100002e8; 0x480001ed bl freetree
Ox100002ec OxBOOOOON0 nop
O LO0002F0 0x4800026d bl Jreadexpr
Ol 000024 ¢ OxBOO0ON00 nop
O 100002F 8 Ox30610038 stw r3,56{zp)
Ox100002F ¢t 0xB0B10038 luz r3,56{=p)
010000300 ¢ 028030000 emplui r3.0
010000304 ¢ Ox4082FF84 bne+ 0310000288
¥
return (033
(10000308, Ox30E00000 11 r3,0
| Ox1000030c: Oxd 8000004 b 0 10MA0Z10
2}8 B Y /% pain */

Source line

Source line graphic indicator
Location by absolute address
References by absolute address

(~leTor—

FIGURE 51: Interleaved Source/Assembler (Absolute Addresses)

Current Stack Frame

You can return to the executing line of code for the current stack frame by
selecting the Current Stackframe command from the Current/Update/
Relatives menu in the Process Window. This command forces the PC arrow
onto the screen and discards the dive stack.

The Current Stackframe command is also useful if you want to undo the
effect of scrolling or finding a function or file using the Function or File...
command. For details, see “Finding the Source Code for Functions” on page 115.

If the program has not begun to run, the Current Stackframe command
puts you in the first executable line of code in your main program function
or subroutine.

120 TotalView User’s Guide Version 4.1

Debugging Programs

Editing Source Text

Editing Source Text

" " m EEEE@EEEEEEEEEEEEEEEEEEEESEEEEEEEEE®E@®®
You can use the Edit Source Text command on the Display/Directory/ Edit
menu to edit source files while you are debugging. TotalView starts your edi-
tor on the source file being displayed in the Source Code Pane of the Pro-
cess Window.

Changing the Editor Launch String

TotalView uses the editor launch string to determine how to start your edi-
tor. To change the value of the editor launch string, see “Changing the Editor
Launch String” on page 121.

You can change the editor launch string to control the way TotalView starts
your editor when you use the Edit Source Text command.

TotalView expands the editor launch string into a command string that is
then executed by the shell sh. This allows you to configure exactly how the
editor is started.

TotalView recognizes replacement characters in the launch string, which are
expanded before TotalView starts your editor. The items that are expanded
are as follows:

%E Expands to the value of the EDITOR environment variable, or to
vi if EDITOR if not set.
%N Expands to the line number in the middle of the Source Code

Pane. Use this option if your editor allows you to specify an ini-
tial line number at which to position the cursor.

%S Expands to the source file name displayed in the Source Code
Pane.
%F Expands to the font name used when you started TotalView.

The default editor launch string is:
xterm -e %E +%N %S

This creates an xterm window in which to run the editor. If you use an editor
that creates its own X window, such as emacs or xedit, you do not need to
create an xterm window, and you should change the editor launch string.

Version 4.1 TotalView User's Guide 121

122

Debugging Programs
m Interpreting Status and Control Registers

You can change the editor launch string using one of the following methods:
m Using an X resource. Refer to "TOTALVIEW* EDITORLAUNCHSTRING” on page
281 for more information.

B Using the Editor Launch String command contained on the Display/
Directory/Edit menu of the Process Window.

Interpreting Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU reg-
isters for the selected frame (you may need to scroll past the stack local var-
iables to see them). To learn about the meaning of these registers, you need
to consult the user’s guide for your CPU and Appendix C, ‘Architectures” on
page 343.

For your convenience, TotalView displays the bit settings of certain CPU reg-
isters symbolically, such as the registers that control the rounding and
exception enable modes. You can edit the values of these registers and con-
tinue execution of your program. For example, you might do this to examine
the behavior of your program with a different rounding mode.

Since the registers that are displayed vary from platform to platform, see
Appendix C, "Architectures” on page 343 for information on the registers sup-
ported for your CPU. For general information on editing the value of vari-
ables (including registers), refer to “Displaying Areas of Memory” on page 146.

Stopping Processes and Threads

To stop a process or a thread, go to the Process Window and select one of
the following commands from the Go/Halt/Step/Next/Hold menu.

TaBLE 12: Stopping a Process

Command Accelerator Stops the ...
Halt Process h Process
Halt Thread ~H Thread; this is disabled if asynchronous

thread control is not available

TotalView User’s Guide Version 4.1

Debugging Programs

Holding and Releasing Processes

TABLE 12: Stopping a Process (cont.)

Command Accelerator Stops the ...

Halt Group H Process and all related processes. Issuing
Halt Group on a process that is already
stopped stops the other members of the
program group

When you stop a process, TotalView updates the Process Window and all
related windows. When you restart the process, execution continues from
the point where the process stopped.

You can force the Process Window to update process information by using
the Update Process Info command from the Current/Update/Relatives
menu without stopping the process. TotalView will temporarily stop the pro-
cess so that it can reread the thread registers and memory. This allows you
to quickly refresh your view of a process.

Holding and Releasing Processes

" " m = EEEEEEEEEEEEEEEEEESEEEEESEEEEEEE®EE®E@®®
TotalView allows you to hold and release processes. When a process is held,
any command that tells the process to run, such as Go Process or Go
Group, has no effect.

Manual hold and release are useful in a number of cases:

m If you wish to run a subset of the processes, you can manually hold all but
the ones you want to run.

m If a process is held at a process barrier point and you want to run it
without first running all the other processes in the group to that barrier,
you can release it manually and then run it.

A process may also be held if it stops at a process barrier breakpoint. You

can manually release a process being held at a process barrier breakpoint.

See “Process Barrier Breakpoints” on page 206 for more information on manu-

ally holding and releasing process barrier breakpoint.

When a process is being held, the Root Window and Process Window display
a held indicator. (This is a letter H.)

Version 4.1 TotalView User's Guide 123

Debugging Programs
m Examining Process Groups

Here are the three ways to hold or release a process or group of processes:
® You can hold a group by choosing Hold Group command from the
Go/Halt/Step/Next/Hold menu in the Process Window.

B You can then release the group by choosing Release Group command
from the Go/Halt/Step/Next/Hold menu in the Process Window.

B You can toggle the hold/release state of a process by choosing the
Hold/Release Process command from the Go/Halt/Stop/Next/Hold menu
in the Process Window.

If a process or a thread is running when you issue a hold or release com-
mand, TotalView first stops the process or thread, then holds it.

NOTE Releasing a process does not mean that the thread will resume executing; exe-
cution only resumes after you use one of the stepping commands.

Examining Process Groups

124

When you debug a multiprocess program, TotalView adds each process to
two process groups as the process starts.

NOTE These groups are not related to UNIX process groups or PVM groups.

TotalView groups the processes depending on the type of system call (fork()
or execve()) that created or changed the processes. The two types of pro-
cess groups are:

Program Group Includes the parent process and all related processes.
A program group includes children that were forked
(processes that share the same source code as the
parent) and children that were forked but which subse-
quently called by function’s such as execve(). That is,
these processes do not share the same source code as
the parent.

Members of a program group can be stopped as a
group.
Share Group [s the processes in a share group that share the same

source code. Members of the same share group share
action points.

TotalView User’s Guide Version 4.1

Version 4.1

Debugging Programs

Examining Process Groups

In general, if you are debugging a multiprocess program, the program group
is partitioned into more than one share group when the program has forked
children that call execve().

TotalView names processes based upon the name of the source program.
Here are the naming rules TotalView uses:

B TotalView names the parent process after the source program.
B Child processes that are forked have the same name as the parent, but
with a numerical suffix (.n).

m Child processes that call execve() after they are forked have the parent’s
name, the name of the new executable in angle brackets (<>) and a
numerical suffix.

For example, if the generate process forks no children, and the filter pro-
cess forks a child process that subsequently calls itself and then calls

execve() to execute the expr program, TotalView names and groups the pro-
cesses as shown in the following figure.

Process Groups Process Names Relationship
filter parent process #1
Share Group 1 ; i
Program filter.1 child process #1
Group 1 Share Group 2 -L_ filter<expr>.1.1 grandchild process #1
P
Grr%%rg? —EShare Group3 —{_ generate parent process #2

FIGURE 52: Example of Program Groups and Share Groups

Displaying Process Groups

The Root Window displays the names of individual processes that are not in
process groups. To display a list of process groups, select the Show All
Process Groups command from the Root Window. The Process Groups Win-
dow appears, as shown in Figure 53.

If you dive into a process group listed in the window, a single Process Group
Window appears, as shown in Figure 54. (You can also dive into any process
listed in the Root Window to display its Process Window.)

TotalView User's Guide

125

Debugging Programs
m Examining Process Groups

ST List of All Process Groups TSR TNEER
5 process groups, ﬁ

0—— filter:Sharebroup (#4)4@
filteriProgramGroup (#5
Filter‘<expr‘>‘1‘1:8hareGrM
generatelSharebroup (#2030 o

generateProgranGroup (#213)

4l

Name of executable

Type of process group

Group number

Dive into process group to display
single process group Window

(~coXof =]

FIGURE 53: Process Groups Window

S8 Croup "filteriProgramGroup” (#9) B27Esg
3 processes in group. 3]

Q@ —F— 3702 T filter (#1)
20602 T Filter.1 (#12)
T292 R Filter<exprr,1,1 {#14})

(203}
=
O Dive into process to display Process Window
® Process ID
® State
(4]

Process name

FIGURE 54: Single Process Group Window

Changing Program Groups

In most situations, TotalView places a process in the correct program group.
You can, however, move processes into different program groups. When you
move a process into a different group, TotalView automatically places it in
the associated share group. The advantage of moving a process into a dif-
ferent program group is that members of the same program group can start
and stop on a breakpoint at the same time and be stepped as a group. (See
“Group-level Single Stepping” on page 131 for details that apply to multipro-
CEess programs.)

126 TotalView User’s Guide Version 4.1

Version 4.1

Debugging Programs

Examining Process Groups

TotalView uses the name of the executable to determine the share group to
which the program belongs. It does not examine the program to see if it is
identical to another program with the same name; TotalView assumes the
programs are identical because their names are identical.

TotalView does not expand a program’s full pathname, so if one instance of
a program is named with the full pathname (./foo), and another is named
with the filename (foo), the programs are placed in different share groups.

To move a process into a different program group:
1 Select Show All Process Groups from the Root Window. The Process

Groups Window appears.

2 Make note of the group ID number for the program group into which
you will move the process. This number is displayed in parentheses.

3 From the Process Window for the process to be moved, display the
Arguments/Create/Signal menu, and select Set Process Program
Group. A dialog box appears, as shown in the following figure.

Enter group id number:

FIGURE 55: Changing Process Groups Dialog Box

4 Enter the group ID number into the dialog box.
5 Select OK.

Finding Active Processes

Although a well-balanced multiprocess program distributes work evenly
among processes, this situation does not always occur. If most active pro-
cesses are waiting for work, it is tedious to look through the entire group to
find the processes. Instead, you can use the Find Interesting Relative com-
mand to find them quickly.

After selecting the Find Interesting Relative command from the Current/
Update/Relatives menu, TotalView displays:

TotalView User's Guide

127

Debugging Programs
m Starting Processes and Threads

B A Process Group Window listing the processes in decreasing order of
interest.

B A Process Window for the most interesting process in the group (if it does
not already have a Process Window open).

To see processes that are less interesting, reexecute the Find Interesting

Relative command, or dive into the processes listed in the Process Group

Window.

Here are a few of the criteria TotalView uses when it looks for something
interesting:

B Running processes are more interesting than stopped processes.

B Threads at breakpoints are more interesting than threads stopped at
arbitrary locations.

B Processes having threads with larger stacks are more interesting than
processes having smaller stacks.

Starting Processes and Threads

128

To start a process, go to the Process Window and select a commands from
the Go/Halt/Step/Next/Hold menu. The commands are shown in Table 13.

TaBLE 13: Starting a Process

Command Accelerator Action

Go Process g Creates and starts this process. Resumes ex-
ecution if the process is not being held, al-
ready exists and is stopped, or is at a break-
point. Starting a process causes all threads
in the process to resume execution.

Go Thread ~g Starts this thread. This command is disabled
if asynchronous thread control is not avail-
able (see “Thread-level Control” on page 132).

TotalView User’s Guide Version 4.1

Debugging Programs

Starting Processes and Threads

TaBLE 13: Starting a Process (cont.)

Command Accelerator Action

Go Group G Creates and starts this process and all other
processes in the multiprocess program (pro-
gram group). Resumes execution of this pro-
cess and the execution of all processes in
the program group if the process is not be-
ing held, already exists and is stopped, or at
a breakpoint.

Issuing Go Group on a process that’s al-
ready running starts the other members of
the program group.

For a single-process program, Go Process and Go Group are equivalent. For
a single-threaded process, Go Thread and Go Process are equivalent.

Commands that contain the term Group (for example, Go Group) refer to all
members of the program group.

NOTE If TotalView is holding a process, these commands will not start the process
or its threads. See "Holding and Releasing Processes” on page 123.

Creating a Process without Starting it

The Create Process (without starting it) command creates a process and
stops it before any of your program executes. If a program is linked with
shared libraries, TotalView allows the dynamic loader to map into these
libraries. Creating a process without starting it is useful if you need to:

B Create watchpoints or change global variables after a process is created,
but before it runs.

B Debug C+ + static constructor code.

Creating a Process by Single-Stepping

The TotalView single-stepping commands allow you to create a process and
run it to a certain point in your programs. The Process Window single-step-

Version 4.1 TotalView User's Guide 129

Debugging Programs
m Single Stepping

ping commands in the Go/Halt/Step/Next/Hold menu are as shown in the
following table.

TaBLE 14: Creating a Process By Stepping

Command Accelerator Creates the process and ...

Step (source line) s Runs it to the first line of the main()
routine

Next (source line) n Runs it to the first line of the main()

routine; this is the same as Step
(source line)

Step (instruction) i Stops it before any of your program ex-
ecutes
Next (instruction) x Stops it before any of your program ex-

ecutes; this is the same as Step
(instruction)

Run (to selection) r Runs it to the line or instruction se-
lected in the Process Window

If a group-level or thread-level stepping command creates a process, it
behaves the same as a process-level command.

Single Stepping

TotalView's single-stepping commands allow you to:

B Execute one source line or machine instruction at a time.

B Run to a selected line, which acts like a temporary breakpoint.

® Run until a function call returns.

Single-step commands are on the Go/Halt/Step/Next/Hold menu of the Pro-
cess Window, and operate at process, group, or thread level. A level affects
which threads within a process and processes within a group are allowed to
run while the single-stepping command is executing.

In all cases, single-step commands operate on the primary thread, which is
the selected thread in the current Process Window.

130 TotalView User’s Guide Version 4.1

Version 4.1

Debugging Programs

Single Stepping

On all platforms except Compaq Alpha Linux, TotalView uses smart single
stepping to speed up single stepping of one-line statements containing
loops and conditions, such as Fortran 90 array assignment statements.
Smart stepping occurs when TotalView realizes that it doesn’t need to step
through an instruction. For example, assume that you have the following
statements:

integer iarray (1000,1000,1000)

iarray = 0
These two statements cause one billion scalar assignments. If you machine
step every instruction, you'll probably never get past this statement. Smart
stepping means that TotalView will single step through the assignment
statement at very close to your machine’s speed.

Process-level Single Stepping

The process-level single-step commands step the primary thread within the
process and allow other threads in the process to run. Threads that reach
the stopping point in advance of the primary thread continue executing. The
primary thread must reach the stopping point before execution stops.

Group-level Single Stepping

The group-level single-step commands step threads of a “step group” drawn
from a share group and allow other threads in the program group to run.
(Program and share groups described on page 124.) When you issue the
command, TotalView identifies a thread within each process that is similar
to the primary thread. These threads form a step group; TotalView steps this
group and stops only when all its members come to the command stopping
point. Similar processes are in the same share group (they execute the same
code) and have at least one thread with a PC that matches the PC of the pri-
mary thread. When several threads in a process are similar to the primary
thread, TotalView arbitrarily assigns one thread to the step group.

Membership in a step group can change while a group single-step command
executes. A thread can leave the step group if its PC diverges from that of
the primary thread, for example if it executes a conditional branch that

TotalView User's Guide

131

Debugging Programs
m Single Stepping

moves away from the primary thread. A thread that is not included in the
step group at command onset can synchronize execution with the primary
thread. TotalView then includes these cases in the step group.

The Run (to selection) Group command does not work like the other group
single-step commands. It stops when the primary thread and at least one
thread from each process in the share group reach the command stopping
point. This lets you synchronize a group of processes and bring them to one
location.

Thread-level Single Stepping

The thread-level single-step commands step the primary thread to the com-
mand stopping point while holding other user threads in the process
stopped. If, however, TotalView can identify manager threads, it runs them
as it steps the single thread. Otherwise, TotalView runs the primary thread
by itself.

NOTE Some operating systems only implement a synchronous run model: when one
thread in the process runs, all threads must run. To step a thread on these systems,
you must use the full-process, single step commands. These platforms include IRIX
and SunOS.

Be aware that the thread-level single-step operations can fail to complete if
the primary thread needs to synchronize with a thread that is not running.
For example, if the primary thread requires a lock that another held thread
owns, and steps over a call that tries to acquire the lock, the primary thread
cannot continue successfully. The other thread must be allowed to run in
order to release the lock.

Thread-level Control

Only some operating systems allow a single thread to start and stop inde-
pendently of others in the same process (this is known as asynchronous
thread control). TotalView single thread commands are only available on the
Compaq Tru64 UNIX, HP, and IBM AIX operating systems.

132 TotalView User’s Guide Version 4.1

Debugging Programs

Single-Step Commands

Selecting Source Lines

Several of the single-stepping commands require you to select a source line
or machine instruction in the Source Code Pane. To choose a source line,
place the cursor over the line and select it. To deselect a source line, select it
again. See “Displaying Thread and Process Locations” on page 138 for informa-
tion on what occurs within the Root Window when you select a source line
or machine instruction.

If you select a source line that has more than one instantiation (for example,
in a C++ function template or code in a header file), TotalView displays a
dialog box that allows you to select a specific instantiation, as shown in the
following figure.

The =ource line you have specified iz ambiguous,
Fleaze zelect one of the following containing functions,
or type in an unambiguous specification below,

) min{double, double?
O mindint, int}

Function specification:

FIGURE 56: Resolving Ambiguous Source Line Dialog Box

You can now select a function or type in the function specification.

Single-Step Commands

To execute a single-step command, select a thread and then use the Go/
Halt/Step/Next/Hold menu in the Process Window to select a command.

Version 4.1 TotalView User's Guide 133

134

Debugging Programs
m Single-Step Commands

The following applies to all single step command:

m To cancel a single-step command in progress, position the mouse pointer
in the Process Window and press Ctrl-C.

m If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the break-
point.

® If you issue a source line step command and the primary thread is
executing in a function that has no source line information, TotalView
performs the corresponding instruction step instead.

Stepping Into Function Calls

The stepping functions execute a single source line or instruction. If the
source line or instruction names a function, TotalView steps into it. If the
source does not exist, TotalView displays the machine instructions for the
function.

The source line stepping commands are shown in the following table.

TaBLE 15: Source Line Stepping Commands

Command Accelerator Executes a single source line at
Step (source line) S Process-level

Step (source line) Group S Group-level

Step (source line) Thread M-"s Thread-level

The machine instruction stepping commands are described in the following
table.

TABLE 16: Machine Stepping Commands
Executes a single machine

Command Accelerator instruction at
Step (instruction) i Process-level
Step (instruction) Group | Group-level
Step (instruction) Thread M-"i Thread-level

The next section describes commands that allow you to single-step over a
function call.

TotalView User’s Guide Version 4.1

Debugging Programs

Executing to a Selected Line

Stepping Over Function Calls

When you step over a function, TotalView stops execution when the primary
thread returns from the function and reaches the source line or instruction
after the function call.

The commands that execute a single source line while stepping over func-
tions are shown in the following table.

TaBLE 17: Source Line Stepping Commands

Command Accelerator Executes asingle source line at
Next (source line) n Process-level

Next (source line) Group N Group-level

Next (source line) Thread M-"n Thread-level

The commands that execute a single machine instruction while stepping
over functions are shown in the following table.

TasLE 18: Machine Stepping Commands

Executes a single machine

Command Accelerator instruction at
Next (instruction) X Process-level
Next (instruction) Group X Group-level
Next (instruction)Thread M-"x Thread-level

Executing to a Selected Line

" = m = == E@EE=E@E®E=E@=EE=8=@=E=E@=5E8=82@=8=85085@8058858388%8388%3@8383@8@8s=
You don'’t have to set a breakpoint to stop execution on a specific line
because TotalView lets you run your program to a selected line or machine
instruction. After selecting the line on which you want the program to
stop, invoke one of the commands shown in the following table.

TaBLE 19: Run to Selection Commands

Command Accelerator Runs the ...

Run (to selection) r Process until the primary
thread reaches the selected
line.

Version 4.1 TotalView User's Guide 135

136

Debugging Programs
m Executing to a Selected Line

TaBLE 19: Run to Selection Commands (cont.)

Command Accelerator Runs the ...

Run (to selection) Thread M-"r Primary thread (which can be a
manager thread) until it reaches
the selected line.

Run (to selection) Group R Primary thread and all pro-
cesses in the share group until
it and at least one thread from
each process in the share
group reach the selected line.
This command allows you to
synchronize a group of pro-
cesses and bring them to one
location.

If your program reaches a breakpoint while running to a selected line, the
debugger discards the “run to” operation and stops at the breakpoint.

You can also run to a selected line in a nested stack frame, as follows:

1 Select a nested frame in the Stack Trace Pane.
2 Select a source line or instruction within the function.
3 Issue a Run (to selection) command.

TotalView executes the primary thread until it reaches the selected line in
the selected stack frame.

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane to tailor execution even more. In this situa-
tion, TotalView uses the frame pointer (FP) of the selected stack frame and
the selected source line or instruction to determine when to stop execution.
When your program reaches the selected line, TotalView compares the value
of the selected FP to the value of the current FP:

m If the value of the current FP is deeper (more deeply nested) than the
value of the selected FP, TotalView automatically continues your program.

m If the value of the current FP is equal or shallower (less deeply nested)
than the value of the selected FP, TotalView stops your program.

TotalView User’s Guide Version 4.1

Debugging Programs

Executing to a Selected Line

Executing to the Completion of a Function

You can step your program out of a function call. To finish executing the cur-
rent function in a thread, select one of the commands shown in Table 20.

TaBLE 20: Run to Selection Commands

Command Accelerator Runs the ...

Return (out of function) o Process until the primary
thread returns from the current
function.

Return (out of function) O Primary thread and all the pro-

Group cesses in the share group until

the primary thread returns form
the current function.

Run (to selection) Thread M-"0o Primary thread (which can be a
manager thread) until it returns
from the current function.

When the command completes, the primary thread is left stopped at the
instruction after the one that called the function.

You can also return out of several functions at once, by selecting a nested
stack frame in the Stack Trace Pane and then issuing a Return (out of
function) command.

TotalView executes the primary thread until it returns to the function in the
selected frame.

If your program calls recursive functions or mutually recursive functions, you
can select a nested stack frame in the Stack Trace Pane to tailor completion
of the function even more. In this situation, TotalView uses the frame
pointer (FP) of the selected stack frame and the selected source line or
instruction to determine when to stop execution. When your program
reaches the selected line, TotalView compares the value of the selected FP
with the value of the current FP in the following way:

m If the value of the current FP is deeper (more deeply nested) than the
value of the selected FP, TotalView continues executing your program.

m If the value of the current FP is equal or shallower (less deeply nested)
than the value of the selected FP, TotalView stops your program.

Version 4.1 TotalView User's Guide 137

Debugging Programs
m Displaying Thread and Process Locations

Displaying Thread and Process Locations

You can see which processes and threads in the share group are at a loca-
tion by selecting a source line or machine instruction in the Source Code
Pane of the Process Window. TotalView dims thread and process information
in the Root Window for share group members if the thread or process is not
at the selected line. A process is considered at the selected line if any of the
threads in the process are at that line. Selecting a line in the Process Win-
dow that is already selected, removes the dimming in the Root Window.

The Root Window reflects the line that you selected most recently. If you
have several Process Windows open, the display in the Root Window will
change depending on the line you selected last in a Process Window. The
display can also change after an operation that changes the process state or
when you issue an Update Process Info command.

The following figure shows Root Windows with dimmed process information
and the corresponding Process Windows that create this output. In this
example, the parallel program was run to a barrier breakpoint, and one pro-
cess (mpirun<cpi>.0) was single-stepped to the next source line. In the
top half of the figure, the line of source at the barrier breakpoint in the Pro-
cess Window was selected. The Root Window shows the processes at that
line not dimmed, and one process not at that line dimmed.

In the bottom half of the figure, the line at which the process stopped was
selected. This process (mpirun<cpi>.0) is not dimmed, but the others are.
Finally, since the MPI starter process (mpirun) is not in the same share group
as the processes running the cpi program, the process information is not
dimmed.

138 TotalView User’s Guide Version 4.1

Debugging Programs

Continuing with a Specific Signal

[Process 430243 mpirundepi>,0 (Stopped)

[HIIHIIING Thread 43024, L wpirundopi>,0 (Stoppedy <Trace Trap> (MMM £23: 55

[Stack Trace MMM S RING HIPS TotalView 3,8.1 VS8 NN

[F) 42990 R mpirun fin __select) ﬁ
dE T N

41409 12 mpiruncPi :1 {1n main.
42887 12 mpirun{cpir,2 {in main}
43030 12 mpirundcpi*,3 {in main}

ATAvaAva e vy

[
AT RRACRRCRRR RO Function main in wedcpd,c INNRRCCCCCRRRRRDDORRRORRRRRRRRRRRN RN RN
26 char processor_name[MPI_MAX_PROCESSOR_NAMED: i
27

HPI_Init4&argc, bargwl s
HPL_Comm_size{MPI_COMM_WORLD, &rumprocs}:
HPL_Comm_rark {MPT_COMM_WORLD, &myid} 2
HPI_Get_processor_namelprocessor_name &namelend s

processor_name } :
e, Process 430241 mpirundopir, 0 {Stopped
I||||||||||||||||||||||||||| Thread 43024,1: npirun<cpi>,0 (Stopped) <Trace Trap> IR0
[0 Stack, Trace |||||||||||||||||||||||Ilm IRIHE MIPS TotalView 3,8,1 %

42990 R mpirun fin __select}
43024 T mpirundcpi’, 0 {in main}
4 . : >

myid,

n=0
while ¢ldone)

iF (ngid == 03 ——
P = in, FP=FrFFrFadsn
__start, P;

printf{"Enter the
scanf{"¥d", &n}:

if (h==00 n=1003 &

Thread €1} sRsdssm

]

T Fusction main in mpicpd .o NIAEACER RN AR RRRRNO AR
26 char processor_name[HPT_HAX_PROCESSOR_MAMED <

MPI_Init{kargc, bargur:
MPI_Comm_size{MPT_COMH_WORLD , &runpracsy s
WPT_Com_rank (MPT_COHM_WORLD &myid2 s
WPI_Get_processor_named processor_name, bnamelen) s

fprintfistderr,"Process ¥d on Hshn",
nyid, processor_name}:

while {ldoner
if dmyid == 0}
{
printf{"Enter the number of intervals: (0 quits) "i:
scanf("#d",&nl:

if (n==0} n=100: else n=0:

fAction Points &

2 lire 33 in main+(xfo

FIGURE 57: Dimmed Process Information in the Root Window

Continuing with a Specific Signal

" " m = EEE@EEEEEEEEEEEEEEEEEEEESEEEEEEE®EE®E@®®
Letting your program continue to execute with a specific signal is useful
when your program contains a signal handler. Here's how you tell TotalView
that this should occur:

Version 4.1 TotalView User's Guide 139

Debugging Programs
m Setting the Program Counter

1 Display the Go/Halt/Step/Next/Hold menu and select the Set Continu-
ation Signal command.

2 In the dialog box, enter the name (such as SIGINT) or number (such
as 2) of the signal to be sent to the thread.

3 Select OK.
The continuation signal is set for the thread you are focused on in the
Process Window. If the operating system can deliver multithreaded sig-
nals, you may set a separate continuation signal for each thread. If it can-
not, this command clears any continuation signal specified for other
threads in the process.

4 Continue execution of your program with commands such as Go,
Step, Next, or Detach from Process.

TotalView continues the threads with the specified signals.

Setting the Program Counter

" " m = EEE@EEEEEEEEEEEEEEESEEEEESEEEEE@EE®EE®E@®®
You might find it useful to resume the execution of a thread at some state-
ment other than the one where it stopped. You can do this by resetting the
value of the program counter (PC). For example, you might want to skip over
some code, execute some code again after changing certain variables, or
restart a thread that is in an error state.

Setting the program counter can be crucial when you want to restart a
thread thatis in an error state. Although the PC icon in the tag field points to
the source statement that caused the error, the PC actually points to the
failed machine instruction within the source statement. You need to explic-
itly reset the PC to the correct instruction. (You can verify the actual location
of the PC before and after resetting it by displaying it in the Stack Frame
Pane or displaying interleaved source and assembler code in the Source
Code Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source
line, a selected instruction, or an absolute value (in hexadecimal). When you
set the PC to a selected line, the PC points to the memory location where
the statement begins. For most situations, setting the PC to a selected line
of source code is all you need to do.

140 TotalView User’s Guide Version 4.1

Version 4.1

Debugging Programs

Setting the Program Counter

To set the PC to a selected line:

1 If you need to set the PC to a location somewhere within a line of
source code, display the Display/Directory/Edit menu and select the
Interleave Display Mode) command. TotalView responds by displaying
the assembler code.

2 Select the source line or instruction in the Source Code Pane. The
debugger highlights the line in reverse video.

If you select a line in a C+ + function template that has more than one
instantiation, TotalView asks you to select an instantiation. See “Selecting
Source Lines” on page 133 for a description of how this works.

3 Display the Go/Halt/Step/Next/Hold menu and select the Set PC to
Selection... command. TotalView asks for confirmation, resets the PC,
and moves the PC icon to the selected line.

When you select a line and ask TotalView to set the PC to that line, TotalView
attempts to force the thread to continue execution at that statement in the
currently selected stack frame. If the currently selected stack frame is not
the top stack frame, TotalView asks if it can unwind the stack:

This frame is buried. Should we attempt to unwind the stack?

If you select Yes, TotalView discards deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and
resets the machine registers to their values for the selected frame. If you
select No, TotalView sets the PC to the selected line, but it leaves the stack
and registers in their current state. Since you cannot assume that the stack
and registers have correct values, selecting No is not usually the right thing
to do.

NOTE In general, only advanced users should set the PC to an absolute address as
it is extremely easy to crash your program. If you need to do this, make sure you have
the correct address; no verification is done.

To set the PC to an absolute address:

1 Display the Go/Halt/Step/Next/Hold menu and select the Set PC to
Absolute Value... command. TotalView than asks you to enter a hexa-
decimal address.

2 Enter the hexadecimal address into the dialog box.

TotalView User's Guide

141

Debugging Programs
m Deleting Programs

3 Select OK. TotalView resets the PC and moves the PC arrow to the line
containing the absolute address.

Deleting Programs

To delete all the processes in a program group, display the Arguments/
Create/Signal menu and select the Delete Program command. The next
time you start the program, for example, by using the Go Process command,
TotalView creates and starts a fresh master process.

Restarting Programs

You can use the Restart Program command to restart a program that is run-
ning or one that is stopped but has not exited. To restart a program, choose
Restart Program from the Arguments/Create/Signal menu in the Process
Window.

If the process is part of a multi-process program, TotalView deletes all
related processes, restarts the master process, and runs the newly created
program.

The Restart Program command is equivalent to the Delete Program com-
mand followed by the Go Process command.

142 TotalView User’s Guide Version 4.1

Chapter 7

Examining and Changing Data

This chapter explains how to examine and change data as you debug your pro-
gram. You'll learn how to:

m Display Variable Windows

B Dive into variables

B Change the values of variables

B Change the data types of variables
B Change the addresses of variables
Display machine instructions
Display C++ and Fortran types
Display array slices

Filter and sort array data

Display the value of a variable in all processes or threads
Visualize array data

Display threads objects

Displaying Variable Windows

You can create windows that display local variables, registers, global vari-
ables, areas of memory, and machine instructions.

Displaying Local Variables and Registers

In the Stack Frame Pane of the Process Window, you can dive into a formal
parameter, local variable, or register to display a Variable Window. You can
also dive into formal parameters and local variables in the Source Code

Version 4.1 TotalView User's Guide 143

7 Examining and Changing Data
_ Displaying Variable Windows

Pane. The Variable Window lists the name, address, data type, and value for
the object, as shown in the following figure.

T nain:SP
in SP) Type: <void> i

Yalue: Oxeffffled (-268433064)

TN check_fortran_arrays_t=single_3dreal _array (3246, 13 NI

(at OefFFFB288500 Tupe: real(100,100,2000 il
Slice: (1,110

Filtersy

Index Yalue

(1,1.1) 1,00083
(2,1.1) 1,75176
(3,1.1) 2,50264
(4,1.1) 3,26352
(58,1.1) 4,0044
{6,1.1) 4,75528
7,11 5,50616
(8,1.1) 6.25704
(3,1.1) 7.00732
(10,1,13 7.,7583
(11,1,1; 8.,50365

FIGURE 58: Diving into Local Variables and Registers

The top window is for a register while the bottom window is for a local array
variable.

You can also display a local variable using the Variable... command that is
contained on the Function/File/Variable menu of the Process Window. When
prompted, enter the name of the variable in the dialog box.

If you keep Variable Windows open while you run a process or thread, the
debugger updates the information in the windows when the process or
thread stops. If TotalView cannot find a stack frame for a displayed local
variable, it displays Stale in the pane header to warn you that you cannot
trust the data, since no such variable exists.

When you debug recursive code, TotalView does not automatically refocus a
Data Pane onto different invocation of a recursive function. If you have a
breakpoint in a recursive function, you may need to explicitly open a new
Data Pane to see the value of a local variable for that stack frame.

144 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Displaying Variable Windows

Displaying a Global Variable

You can display a global variable by:

B Diving into the variable in the Source Code Pane.

m Displaying the Function/File/Variable menu and selecting the Variable...
command. When prompted, enter the name of the variable.

AVariable Window appears for the global variable, as shown in the following

figure.
e presious (19776,23
{at 0x20000678) Type: double j:t
Yaluey 96
=]

FIGURE 59: Variable Window for a Global Variable

Displaying All Global Variables

TotalView lets you display all of the current process’s global variables by
selecting the Global Variables Window command from the Function/File/
Variable menu. The window that appears contains the name and value of
every global variable used by the process, as shown in the following figure.

NN Globals for "filter<exprr,1,1" (197763

context: (Array) [+
nextchar; QufFFFFFFE (=12
previous: 95

4l

FIGURE 60: Global Variables Window
You can display a Variable Window for any global variable listed in this win-

dow by diving into the variable or by selecting the Variable command and
entering a variable’s name in the displayed dialog box.

TotalView User's Guide 145

7 Examining and Changing Data
_ Displaying Variable Windows

Displaying Areas of Memory

You can display areas of memory in hexadecimal and decimal. Do this by
displaying the Function/File/Variable menu and selecting the Variable com-
mand. When prompted, enter one of the following in the dialog box:

B A hexadecimal address

When you enter a single address, TotalView displays the word of data
stored at that address.

m A pair of hexadecimal addresses

When you enter a pair of addresses, TotalView displays the data (in word
increments) from the first to the last address. To enter a pair of addresses,
enter the first address, a comma, and the last address.

NOTE All hexadecimal constants must have a “0x" prefix. Also, you can enter
these addresses using expressions.

The Variable Window for an area of memory, shown in the following figure,
displays the address and contents of each word.

0x0001106¢, 0x001108c

{at (u0001106c) Type: <woid>[8] j;i
Slice: [:]

Address Value

O0001106c: Oxe007bffo (-H36363012)
O000110703 0xb0140000 {-1340866560)
0000110741 0xB1c7e008 (21176074163
O00011078: 081280000 (2115502080}
Ox0001107c: 000010000 (65536}
O000110803 000010000 (65536}
0000110841 000010000 (65536}
O00011088: 000010000 (B5536)

4l

FIGURE 61: Variable Window for Area of Memory

The starting location of the memory area is displayed in the window’s title.
Within the window, information is displayed in hexadecimal and in decimal.

146 TotalView User’s Guide Version 4.1

Examining and Changing Data

Diving in Variable Windows

Displaying Machine Instructions

You can display the machine instructions for entire routines as follows:

B Dive into the address of an assembler instruction in the Source Code
Pane (such as main+0x10 or 0x60). A Variable Window displays the
instructions for the entire function and highlights the instruction that you
dived into.

B Dive into the PC in the Stack Frame Pane. A Variable Window lists the
instructions for the entire function containing the PC, and highlights the
instruction to which the PC points.

= functimmin=r00——————
{at (u00010e28) Type: <code>[154] i

Slice: [:]

Addres= Value Dizassenbly Offzet+Label
000010e28: (x9de3be?d save #ap,-0x188, ¥sp main
Oe00010e20: Oxf227a048 st i1, [Efp+0x4a] Oxd+main
000010303 Oxf027a044 st Fi0, [Efpixdd] (xB+main
0000102343 Oxe007a044 1d [Efp+0x441,¥10 (xc+main
000010e38: (xB0a42002 subcc 10, 0x2, %g0 (xd0+main
000010e3c: 016800011 bge mair+0x5hg Oxld+main
000010403 (01000000 nop 0x18+main
(0001044 023000088 sethi Ahi 0220000, 211 (xlctmain
000010248y 0252146180 or #11, 0180, 211 (x20+main

FIGURE 62: Variable Window with Machine Instructions

m Cast a variable to type <code> or array of <code>, as described in
“Changing Types to Display Machine Instructions” on page 158.

Closing Variable Windows

When you are finished analyzing the information in a Variable Window, use
the Close Window command to close the window. You can also use the
Close All Similar Windows command to close all Variable Windows.

Diving in Variable Windows

If the variable being displayed in a Variable Window is a pointer, structure, or
array, you can dive into the contents listed in the Variable Window. This addi-
tional dive is called a nested dive. When you perform a nested dive, the Vari-
able Window replaces the original information with information about the

Version 4.1 TotalView User's Guide 147

7 Examining and Changing Data
_ Diving in Variable Windows

current variable. With nested dives, the original Variable Window is known as
the base window.

Figure 63 shows the results of diving into a variable in the Stack Frame Pane
of main() in the Process Window. This example dives into a pointer variable
named node with a type of node_t*. The first Variable Window (the base
window) displays the value of node.

.maininode {19776.2)
{at Ox2ff221b8r Tupe: node_t# H
Values 0x20000528 9
DS nainsknode {19776.2) [Al#
> {at 0x2000058) Type: node_t ﬁ
Field Type Yalue
node_class enum node_class_t nc_add {43}
u struct <nameless3> (Compound Object)
node struct <namelessZr {Compound Object?}
9 left struct node_t¥ 020000525
right struct node_t# 020000028
value double 1,49268267690035:-1504
=

@ Base window: First dive (on the variable node_t*,

a pointer)
@ Nested window: Second dive (on the value of node _t
©® Undive icon

FIGURE 63: Nested Dives

Diving into the value shown in the base window tells TotalView to replace
the window with a nested dive window. The nested dive window—displayed
at the bottom of the figure—shows the structure referenced by the node_t*
pointer.

Also, notice that the number of right angle brackets (>) in the upper left
hand corner indicates the number of nested dives that were performed in
the window. TotalView maintains each dive on a dive stack.

You can manipulate Variable Windows and nested dive windows in the fol-
lowing ways:

B To "undive” from a nested dive, click the Dive mouse button on the
undive icon, and the previous contents of the Variable Window appears.

148 TotalView User’s Guide Version 4.1

Examining and Changing Data

Changing the Values of Variables

® If you have performed several nested dives and want to create a new copy
of the base window, select the New Base Window command from the
Variable Window.

m If you dive into a variable that already has a Variable Window open, the
Variable Window pops to the surface. If you want a duplicate Variable Win-
dow open, hold down the Shift key when you dive on the variable.

m If you select the Duplicate Window command from the Variable Window,
a new Variable Window appears that is a duplicate of the current vAriable
Window except that it has an empty dive stack.

Changing the Values of Variables

You can change the value of any variable or the contents of any memory
location displayed in a Variable Window by selecting the value and using the
field editor to change the value as desired.

You can type an expression instead of a value. For example, you can enter
1024*1024. This expression can include logical operators.

You can also edit the value of variables directly from the Stack Frame Pane
by selecting them. You cannot, however, change the value of bit fields
directly, but you can use the expression window to assign a value to a bit
field. See “Evaluating Expressions” on page 233 Similarly, you cannot directly
change the value of fields in nested structures; instead, you must first dive
into it.

Changing the Data Type of Variables

Version 4.1

The data type declared for the variable determines its format and size
(amount of memory) in the Variable Window. For example, if you declare an
int variable, the debugger displays the variable as an integer.

You can change the way data is displayed in the Variable Window by editing
the data type. This is known as casting. TotalView assigns types to all data
types, and in most cases, they are identical to their programming language
counterparts.

TotalView User's Guide

149

7 Examining and Changing Data
_ Changing the Data Type of Variables

®m When displaying a C variable, TotalView types are identical to C type rep-
resentations, except for pointers to arrays. By default, TotalView uses a
simpler syntax for pointers to arrays.

®m When displaying a Fortran variable, TotalView types are identical to For-
tran type representations for most data types, including INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER.

You can use the field editor to change a type in a Variable Window. If the win-

dow contains a structure with a list of fields, you can edit the types of the
fields listed in the window.

NOTE When you edit a type, TotalView changes how it displays the variable in the
current Variable Window, but other windows listing the variable remain the same.

How TotalView Displays C Data Types

TotalView's syntax for displaying data is identical to C cast syntax for all data
types except pointers to arrays. Thus, you use C cast syntax for int,
unsigned, short, float, double, union, and all named struct types.

You read TotalView types from right to left. For example, <string>*[20]* isa
pointer to an array of 20 pointers to <string>.

Table 21 shows some common types.

TagLe 21: Common types

Type String Meaning

int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string>** Pointer to a pointer to a null-terminated character string

<string>*[20]* Pointer to an array of 20 pointers to null-terminated
strings

The following sections discuss the more complex types.

150 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Changing the Data Type of Variables

C Cast Syntax

You can also enter C cast syntax verbatim in the type field for any type. In
addition, TotalView can display C cast syntax permanently if you set an X
Window Resource. See "TOTALVIEW*CTYPESTRINGS” on page 280 for further
information.

Pointers to Arrays

Suppose you declared a variable vbl as a pointer to an array of 23 pointers
to an array of 12 objects of type mytype_t. The C language declaration for
this is:

mytype_t (*(*vb[231) [12];
To cast vbl to the same type in your C program:

(mytype_t (*(*)[23D[121vbl
The TotalView type syntax for vbl is:

mytype_t[121*[231*

Arrays

Array type names can include a lower and upper bound separated by a
colon.

By default, the lower bound for a C or C+ + array is 0, and the lower bound
for a Fortran array is 1. In the following example, an array of integers is
declared in C and then in Fortran:

int al10];
integer a(10)

In the C example, the elements of the array range from a[0] to a[9], while in
the Fortran example, the elements of the array range from a(1) to a(10).

When the lower bound for an array dimension is the default for the language,
TotalView displays only the extent (that is, the number of elements) of the
dimension. Consider the following array declaration in Fortran:

integer a(1:7,1:8)

TotalView User's Guide

151

7 Examining and Changing Data
_ Changing the Data Type of Variables

Since both dimensions of the array use the default lower bound for Fortran
(1), TotalView displays the data type of the array using only the extent of
each dimension, as follows:

integer(7,8)

If an array declaration does not use the default lower bound, TotalView dis-
plays both the lower bound and upper bound for each dimension of the
array. For example, in Fortran, you would declare an array of integers with
the first dimension ranging from —1 to 5 and the second dimension ranging
from 2 to 10 is as follows:

integer a(-1:5,2:10)
TotalView displays the following data type for this Fortran array:
integer(-1:5,2:10)

When editing a dimension of an array, you can enter just the extent (if using
the default lower bound) or both the lower and upper bounds separated by
a colon.

If desired, you can display a subsection of an array, or filter a scalar array for
values matching a filter expression. Refer to "Displaying Array Slices” on page
167 and ‘Array Data Filtering” on page 171 for further information.

Typedefs

The debugger recognizes the names defined with typedef, but displays the
definition of the type (that is, the base data type), rather than its name. For
example:

typedef double *dptr_t;
dptr_t p_vbl;

The debugger displays the type for p_vbl as double*, not as dptr _t.

Structures

TotalView treats struct as a keyword. You can type struct as part of the type
string, but it is optional. If you have a structure and another data type with
the same name, however, you must include struct with the name of the
structure so TotalView can distinguish between the two data types.

152 TotalView User’s Guide Version 4.1

Examining and Changing Data

Changing the Data Type of Variables

If you name a structure using typedef, the debugger uses the typedef name

as the type string. Otherwise, the debugger uses the structure tag for the
struct.

For example, consider the structure definition:
typedef struct mystruc_struct {
int field_1;
int field 2;
} mystruc_type;
TotalView displays mystruc_type as the type for struct mystruc_struct.

TotalView does not interpret the definition of structures in a type string. For
example, it cannot use a definition such as struct {int a; int b;}.

Unions

TotalView displays a union as it does a structure. Even though the fields of a
union are overlaid in storage, TotalView displays them on separate lines in
the Variable Window.

When TotalView displays some complex arrays and structures, it displays the
compound object or array types in the Variable Window. Editing the com-
pound object or array types could yield undesirable results. We do not rec-
ommend editing these types.

Built-In Types

TotalView provides a number of predefined types. These types are enclosed
in angle brackets to avoid conflict with types already defined in the lan-
guage. You can use these built-in types anywhere a user-defined type can be
used, such as in a cast expression. These types are also useful when debug-
ging executables with no debugging symbol table information. The following
table lists the built-in types.

TABLE 22: Built-in Types

Type String Language Size Meaning
<address> C void* Void pointer (address)
<char> C char Character

Version 4.1 TotalView User's Guide 153

7 Examining and Changing Data
_ Changing the Data Type of Variables

TABLE 22: Built-in Types (cont.)

Type String Language Size Meaning
<character> Fortran character Character
<code> C parcel Machine instructions

A parcel is defined to be the
number of bytes required to
hold the shortest instruction for
the target architecture

<complex*16> Fortran complex*16 real*8-precision floating-point
complex number.

complex*16 types contain a
real part and an imaginary part,
which are both of type real*8

<complex*8> Fortran complex*8 real*4-precision floating-point
complex number.

complex*8 types contain a real
part and an imaginary part,
which are both of type real*4

<complex> Fortran complex Single-precision floating-point
complex number.
complex types contain a real
part and an imaginary part,
which are both of type real

<double Fortran double preci- Double-precision floating-point

precision> sion number

<double> C double Double-precision floating-point
number

<extended> C long double Extended-precision floating-

point number.

Extended-precision numbers
must be supported by the target

architecture

<float> C float Single-precision floating-point
number

<int> C int Integer

<integer*1> Fortran integer*1 One-byte integer

154 TotalView User’s Guide Version 4.1

Examining and Changing Data

Changing the Data Type of Variables

TABLE 22: Built-in Types (cont.)

Type String Language Size Meaning

<integer*2> Fortran integer*2 Two-byte integer

<integer*4> Fortran integer*4 Four-byte integer

<integer*8> Fortran integer*8 Eight-byte integer

<integer> Fortran integer Integer

<logical*1> Fortran logical*1 One-byte logical

<logical*2> Fortran logical*2 Two-byte logical

<logical*4> Fortran logical*4 Four-byte logical

<logical*8> Fortran logical*8 Eight-byte logical

<logical> Fortran logical Logical

<long long> C long long Long long integer

<long> C long Long integer

<real*16> Fortran real*16 Sixteen-byte floating-point
number

<real*4> Fortran real*4 Four-byte floating-point num-
ber

<real*8> Fortran real*8 Eight-byte floating-point num-
ber

<real> Fortran real Single-precision floating-point
number

<short> C short Short integer

<string> C char Array of characters

<void> C long Area of memory

The following sections give more detail about several of the built-in types.

Character arrays (<string> Data Type)

If you declare a character array as char vbl[x], the debugger automatically
changes the type to <string>[n]; that is, a null-terminated, quoted string
with a maximum length of n. Thus, by default, the array is displayed as a
quoted string of n characters, terminated by a null character. Similarly, the
debugger changes char* declarations to <string>* (a pointer to a null-ter-
minated string).

Version 4.1 TotalView User's Guide 155

7 Examining and Changing Data
_ Changing the Data Type of Variables

Since most C character arrays represent strings, the <string> type can be
very convenient. If, however, you intended the char data type to be a pointer
to a single character or an array of characters, you can edit the <string>
back to a char (or char[n]) to display the variable as you declared it.

Areas of memory (<void> Data Type)

TotalView uses the <void> type for data of an unknown type, such as the
data contained in registers or in an arbitrary block of memory. The <void>
type is similar to the int in the C language.

If you dive into registers or display an area of memory, the debugger lists the
contents as a <void> data type. Further, if you display an array of <void>
variables, the index for each object in the array is the address, not an inte-
ger. This address can be useful when displaying large areas of memory.

If desired, you can change a <void> into another type. Similarly, you can
change any type into a <void> to see the variable in decimal and hexadec-
imal.

Instructions (<code> Data Type)

TotalView uses the <code> data type to display the contents of a location
as machine instructions. Thus, to look at disassembled code stored at a
location, dive on the location and change the type to <code>. To specify a
block of locations, use <code>[n], where n is the number of locations
being displayed.

Type Casting Examples

This section contains some common type casting examples.

Example: Displaying the argv Array

Typically, argv is the second argument passed to main(), and it is either a
char **argv or char *argv][]. Since these declarations are equivalent (a
pointer to one or more pointers to characters), TotalView converts both to
<string>** (a pointer to one or more pointers to null-terminated strings).

Suppose argv points to an array of 20 pointers to character strings. There is
how you can edit its type to display an array of 20 pointers:

156 TotalView User’s Guide Version 4.1

Examining and Changing Data

Opaque Type Definitions

1 Select the type string for argv.

2 Edit the type string using the field editor commands. Change it to:
<string>*[201*

3 To display the array, dive into the value field for argv.

Example: Displaying Declared Arrays

TotalView displays arrays in the same way as it displays local and global vari-
ables. In the stack frame or Source Code Pane, dive into the declared array.
A Variable Window displays the elements of the array.

Example: Displaying Allocated Arrays

The C language uses pointers for dynamically allocated arrays. For example:
int ¥p = malloc(sizeof(int) * 20);

Because TotalView does not know that p actually points to an array of inte-

gers, here is how you would display the array:

1 Dive on the variable p of type int*.
2 Change its type to int[20]*.
3 Dive on the value of the pointer to display the array of 20 integers.

Opaque Type Definitions

Version 4.1

An opaque type is a data type that is not fully specified, hidden, or whose
declaration is deferred. For example the following C declaration defines the
data type for p as pointer to struct foo, which is not yet defined:

struct foo;
struct foo *p;

When TotalView encounters this kind of information, it indicates its data
type by appending <opaque> to the declaration. For example:

struct foo <opaque>

If the type is actually defined in another module, deleting <opagque> from
the data type tells TotalView to find the actual definition for the type.

TotalView User's Guide

157

7 Examining and Changing Data
_ Changing the Address of Variables

On platforms where TotalView uses “lazy reading” of the symbol table, you
must force TotalView to read the symbols from the module containing the
full type definition of the opaque type. Use the Function or File command
to force TotalView to read the symbols, as described in “Finding the Source
Code for Functions” on page 115.

Changing the Address of Variables

You can edit the address of a variable in a Variable Window. When you edit
the address, the Variable Window shows the contents of the new location.

You can also enter an address expression, such as 0x10b8-0x80.

Changing Types to Display Machine Instructions

Here's how you can display machine instructions in any Variable Window:

1 Select the type string at the top of the Variable Window.

2 Change the type string to be an array of <code> data types, where n
indicates the number of instructions to be displayed. For example:

<code>[nl

The debugger displays the contents of the current variable, register, or
area of memory as machine-level instructions.

The Variable Window (shown in Figure 62 on page 147) lists the following
information about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the location.
Disassembly The instruction and operands stored in the location.
Offset+Label The symbolic address of the location as a hexadecimal

offset from a routine name.

You can also edit the value listed in the value field for each machine instruc-
tion.

158 TotalView User’s Guide Version 4.1

Examining and Changing Data

Displaying C++ Types

Displaying C++ Types

Classes

TotalView displays C+ + classes and accepts class as a keyword. When you
debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes that use
inheritance, showing derivation by indentation.

NOTE Some C++ compilers do not output accessibility information. In these cases,

the information is omitted from the display.

For example, the following figure displays an object of a class c:

i

obj {(BS77)
{at 0x000208b8% Type: clas=z c
Field Type Value
d class d {Public base class)
b class b Virtual public baze class})
b_wal Latrings# 0x00020888 > "b walue"
d_wal Latrings# 000020830 > "d walue"
[class e {Public base class)
e_val Latrings# 000020898 > "e walue"
c_val Latrings# 000020830 > "¢ walue"

£

FIGURE 64: Displaying C++ Classes that Use Inheritance

The definition is as follows:

class b {

char * b _val;
public:

b0 {b_val = “b value®;}
h

class d : virtual public b {
char * d val;
public:
d0 {d val = “d value“;}
1

class e {
char * e_val;
public:
el {e val = “e value“;}

=

Version 4.1

TotalView User's Guide

159

7 Examining and Changing Data
_ Displaying C++ Types

class c : public d, public e {

char * c_val;
public:
cO {c_val = “c value“;}

h
Changing Class Types in C++

TotalView tries to display the correct data when you change the type of a
Data Pane to move up or down the derivation hierarchy.

If a change in the data type also requires a change in the address of the data
being displayed, the debugger asks you about changing the address. For
example, if you edit the type field in class ¢ shown in Figure 65 to class e,
TotalView displays the following dialog box:

Cazting c to itz base clasz e requires a change to the address,
Do you want TotalView to do that 7

FIGURE 65: C+ + Type Cast to Base Class Dialog Box

Selecting Yes tells TotalView to change the address to ensure that it displays
the correct base class member. Selecting No tells TotalView to display the
memory area as if it were an instance of the type to which it is being cast,
leaving the address unchanged.

Similarly, if you change a data type in the Data Pane so you can cast a base
class to a derived class, and that change requires an address change, the
debugger asks you to confirm the operation. For example, the following fig-
ure show the dialog posted if you cast from class e to class c:

Cazting from e to itz derived class c requires a change to the address,
Do you want to do that 7

FIGURE 66: C++ Type Cast to Derived Class Dialog Box

160 TotalView User’s Guide Version 4.1

Examining and Changing Data

Displaying Fortran Types

Displaying Fortran Types

Version 4.1

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.

Displaying Fortran Common Blocks

For each common block defined within the scope of a subroutine or func-
tion, TotalView creates an entry in that function’s common block list. The
Stack Frame Pane in the Process Window displays the name of each com-
mon block for a function. The names of common block members have func-
tion scope, not global scope.

TotalView creates a user defined data type for the common block in which
each of the common block members are fields in the type. If you dive on a
common block name in the Stack Frame Pane, TotalView displays the entire
common block in a Variable Window, as shown in Figure 67.

IR Stack Frame N0,

Function ", _main"i i
Mo arguments,]
Common blocks:
stock: {Compound Objecty
Registers for the frame:

I . _naingstock <17802,1 NIRRT
cf (at 0x20000688) Type: tupelstock? j:t
RTO Field Type Value
cou float 1.1
sheep float 2,2
lamb integerkd 3 000000003
steer float 4.4
goat float 5.5
=]

FIGURE 67: Diving into Common Block List in Stack Frame Pane

The top window shows a common block list in a Stack Frame Pane. The

other window shows the results of diving on the common block to see its
elements.

If you dive on a common block member name, TotalView searches all com-
mon blocks for a matching member name and displays the member in a Vari-
able Window.

TotalView User's Guide 161

7 Examining and Changing Data
_ Displaying Fortran Types

Normally, TotalView displays the initial address for a common block in the
Data Pane. When the common block is a composite object with separate

addresses for each component, TotalView displays a Multiple tag to indi-
cate that it cannot display a single address.

Displaying Fortran Module Data

TotalView tries to locate all data associated with a Fortran module and pro-
vide a single display that contains all of it. For functions and subroutines
defined in a module, TotalView adds the full module data definition to the
list of modules displayed in the Stack Frame Pane.

NOTE TotalView only displays a module if it contains data. Also, the amount of infor-
mation that your compiler gives TotalView may restrict what is displayed.

Although a function may use a module, TotalView may not be able to deter-
mine if the module was used or what the true names of the variables in the
module are. In this case, module variables either appear as local variables of
the subroutine, or a module appears on the list of modules in the Stack
Frame Pane that contains (with renaming) only the variables used by the
subroutine.

Alternatively, you can view a list of all of the known modules by using the
Fortran Modules Window command from the Function/File/Variable
menu. This window behaves like the Global Variables Window, so you can
dive through an entry to display the actual module data, as shown in
Figure 68.

NOTE If you are using the SUNPro compiler, TotalView can only display module data
if you force it to read the debug information for a file that contains the module defi-
nition or a module function. For more information, see “Finding the Source Code for
Functions” on page 115.

Debugging Fortran 90 Modules

Fortran 90 and 95 let you place functions, subroutines, and variables inside
modules. These modules can then be USEd (included) elsewhere. When
modules are USEd, the names in the module become available in the using
compilation unit, unless they have been excluded by USE ONLY, or

162 TotalView User’s Guide Version 4.1

Version 4.1

Dive on module name
to see data window
containing module
variables

Dive on module variable
to see data window
with more detail

Examining and Changing Data

Displaying Fortran Types

Modules for "ptr_in_type_in_mod" {13416}

>

Modules from “ptr_in_type_in_mod” ii
r test_module: (Module:

test_module {13416,3}

(Multiple} Type: typeltest_modulel

>

Field Type Value

dataZ typeidata_typelii}, pointer (0140015000 -> (Array)

— datal typeidata_typelii}, pointer (0140013600 -> (Array)

test_module *data? (13416,3) [#]
> {at 0x1400150000 Type: typeidata_tuypeli:l)
> Actual Type: typeldata_type: (7}
Slice: (1)
Field Type Value
i1y typeidata_typel {Compound Object}
a real®8{:) pointer (0140013240 -> (Array)
2y typeidata_typel {Compound Object}
a real®8{:) pointer (0140013250 - (Array)
(3 typeidata_typel {Compound Object}
a real®8{:) pointer (0140013000 -> (Array)
4y typeidata_typel {Compound Object}

FIGURE 68: Fortran Modules Window

renamed. This means that you do not need to explicitly qualify the name of
a module function or variable from the Fortran source code.

When debugging this kind of information, you will need to know the location
of the function being called. Consequently, TotalView uses the following syn-
tax when it displays a function contained within a module:

modulename” functionname

You can use also this syntax in the Function or File command in the
Function/File/Variable menu.

Fortran 90 also introduced the idea of a contained function that is only visi-
ble in the scope of its parent and siblings. There can be many contained
functions in a program, all using the same name. TotalView uses a similar
syntax when it displays these function. If the compiler gave TotalView the
function name for a nested function, TotalView displays it using the follow-

ing syntax:

parentfunction() “containedfunction

If you give an ambiguous name for a function, TotalView displays a dialog
box showing all of the possible matching functions. See “Finding the Source
Code for Functions” on page 115 for more information.

TotalView User's Guide

163

7 Examining and Changing Data
_ Displaying Fortran Types

Within contained functions, all of the parent function’s variables are visible
and accessible through a static chain. If the compiler retained information
about the static chain, TotalView can access these variables in the same way
as the compiled code does. Consequently, they are visible in Data Panes,
and from evaluation points or expressions. If the compiler does not pass on
information about the static chain, TotalView can still find these up-level
variables and display then in Data Panes, but you will not be able to use
them in evaluation points or expressions.

Fortran 90 User Defined Type

A Fortran 90 user defined type is similar to a C structure. TotalView displays
a user defined type as type(name), which is the same syntax used in Fortran
90 to create a user defined type. For example, here’s a code fragment that
defines a variable matrix1 of type(sparse):

type sparse

logical®1, pointer :: smask (:,:]
real, pointer :: sval (:]
character (20) :: heading

end type sparse
typelsparsel)::matrix1

TotalView displays it as follows:

TR MAIN__smate-ix IR
{at (u00070434) Type: typelsparsel j;i

Field Type Value

amask logical#liy, 1), pointer 0x00082ed8

aval reali:}, pointer TN

heading characters{20} "Matrix 1

4l

FIGURE 69: Fortran 90 User Defined Type

Fortran 90 Deferred Shape Array Type

Fortran 90 allows you to define deferred shape arrays and pointers. The
actual bounds of the array are not determined until the array is allocated,
the pointer is assigned, or, in the case of an assumed shape argument to a

164 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Displaying Fortran Types

subroutine, the subroutine is called. The type of deferred shape arrays is
displayed by TotalView as type(:), in the same way that an array is declared in
Fortran.

When TotalView displays the data for a deferred shape arrays, it displays the
type used in the definition of the variable and the actual type that this
instance of the variable has. The actual type is not editable since you can
achieve the same effect by editing the definition’s type. The following exam-
ple shows the type of a deferred shape rank 2 array of REAL data with run-
time lower bounds of -1 and 2, and upper bounds of 5 and 10:

Type: reall:,:]

Actual Type: real(-1:5,2:10)
Slice: (:,:)

Fortran 90 Pointer Type

A Fortran 90 pointer type allows you to point to scalar or array types. The
debugger displays pointer types as type,pointer, which is the same syntax
used in Fortran 90 to create a pointer variable.

For example, a pointer to a rank 1 deferred shape array of real data is dis-
played in the Variable Window as:

Type: real(:),pointer

To view the data instead of the pointer variable, you must dive on the value.

NOTE If you are using the IBM xIf compiler, TotalView cannot determine the rank of
the array from the debugging information. In this case, the type of a pointer to an
array appears as “type(...),pointer”. The actual rank is filled in when you dive through
the pointer to look at the data.

The value of the pointer is displayed as the address of the data to which the
pointer points. This address is not necessarily the array element with the
lowest address.

TotalView implicitly handles slicing operations that set up a pointer or
assumed shape subroutine argument so that indices and values it displays
in the Variable Window are the same as you would see in the Fortran code.

TotalView User's Guide

165

7 Examining and Changing Data
_ Arrays

For example:

integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
doi= 1,10

iali) =i
end do
ip =>ial10:1:-2)

After diving through the ip pointer, TotalView displays the window shown in
Figure 70.

o ————————— ia (2534
{at Ox200008200 Type: integersd (103
Slice:r (&)
Filter:

Index Yalue

o = ip {(24534)
g TET Ty fat (20000844 Type: integer#d(:)
3 3 Actual Type: integer#4{5}
4 4 {1 Slicey (1)

e TET LR Filter:
3] B {1
7y 7 4 Index Walue
8 8

B
i

1 10 (0pe0O00000a 3
2y 8 C0x00000005)
(3 B {0:00000005)

4y 4 {0:00000004 »
e T 2 L0=00000002

<l

Target array ia

Pointer ip into array ia
Address of ip(1)
Values reflect slice

FIGURE 70: Fortran 90 Pointer Value

o0

Notice that the address displayed is not that of the array’s base. Since the
array’s stride is negative, succeeding array elements are at lower absolute
addresses. Consequently, the address displayed is that of the array element
having the lowest index (which may not be the first displayed element if you
used a slice to display the array with reversed indices).

Arrays

TotalView can quickly display very large arrays in Variable Windows. If an
array overlaps nonexistent memory, the initial portion of the array is cor-

166 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Arrays

rectly formatted. If memory is not allocated for an array element, TV displays
“Bad Address” in the element’s subscript.

Displaying Array Slices

TotalView lets you display array subsections by editing the slice field within an
array’s Variable Window. (An array subsection is called a slice.) The slice field
contains placeholders for all array dimensions. For example, here is a C dec-
laration for a three-dimensional array:

integer ial101[201(5]
TotalView defines this slice as follows: [:][:][:].
Here is a Fortran 90 deferred shape array definition:

integer, dimension (:,:) :: ia
Its TotalView slice definition is (:,:).

As you can see, TotalView displays as many colons (:) as there are array di-
mensions. Initially, the field contains [:] for C arrays or (:) for Fortran arrays.

Slice Definitions
A slice definition has the following form:

lower_bound:upper_bound:stride

This tells TotalView to display every stride element of the array, starting at the
lower_bound and continuing through the upper _bound, inclusive. (A stride tells
TotalView that it should skip over elements and not display them.)

For example, if you specified a slice of [0:9:9] for a 10-element C array,
TotalView displays the first element and last element, which is the 9th ele-
ment beyond the lower bound.

If a slice is defined as [Ib:ub:stride], Totalview represents the set of values of
i generated by the append statements in the following way:
i=1b
if (stride > 0)
while (i <= ub)

append i
i =i+ stride

TotalView User's Guide

167

168

7 Examining and Changing Data
_ Arrays

else
while (i >= ub)
append i
i =i + stride

If stride < 0 and ub > Ib, TotalView treats the slice as if it were as follows:
[ub : Ib : stridel

(This is an extension to the way Fortran displays slices.) Consequently, the
debugger lets you view a dimension with reversed indexing. For example, the
following definition tells TotalView to display an array beginning at its last
value and moving to its first:

[::-1]

In contrast, Fortran 90 requires that you explicitly enter the upper and lower
bounds when you are reversing the order in which array elements are dis-
played.

Because the default value for the stride is 1, you can omit the stride (and the
colon that precedes it) if your stride value is 1. For example, the following
two definitions display array elements 0 through 9:

[0:9:11]

[0:9]
If the lower and upper bound are the same number, you can specify the slice
with just a single number. This number indicates the lower and upper bound.
For example, the following two definitions tell TotalView to display array ele-
ment 9:

[9:9:11]
[91

NOTE The lower_bound, upper_bound, and stride can only be constants.

For multidimensional arrays, you can specify a slice for each dimension
using the following syntax:

Cand C++: [slice][slice]. ..

Fortran: (slice,slice, . ..)

TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Arrays

Example 1

Aslice declaration of [::2] for a C or C++ array (with a default lower bound
of 0) tells TotalView to display elements with even indices of the array: 0, 2,
4, and so on. However, if this were defined for a Fortran array (with a default
lower bound of 1), TotalView displays elements with odd indices of the array:
1,3,5,and so on.

Example 2
The following example displays a slice of (::9,::9). This definition displays
the four corners of a 10-element by 10-element Fortran array.

ia (24534)

{at (u20000820% Type: integer#4{10,10} ii
Slice: (1191390
Filter:
Index Yalue
(1,1: 1 {0u0000000L
(10,1 10 (00000000
(1,100 91 {0u00000050
{10,103 100 (000000064 3
=]

FIGURE 71: Slice Displaying the Four Corners of an Array

Example 3
You can use a stride to invert the order and skip elements. For example, here
is a slice that begins with the upper bound of the array and display every
other element until it reaches the lower bound of the array: (::-2). Thus,
using (::-2) with a Fortran integer(10) array tells TotalView to displays the
following elements:

(10)

(8)
(6)

TotalView User's Guide

169

7 Examining and Changing Data
_ Arrays

Example 4

You can also combine inverse order and a limited extent to display a small
section of a large array. The following example specifies a (2:3,7::—1) slice
with a integer*4(-1:5,2:10) Fortran array:

== i3 (24534}
{at 0x20000820% Type: integersd{-1:5,2:10) ﬁ

Slice: (2:3,7::-10
Filter:

Index Yalue

(2,100 B0 (000000030

(3,100 B1 {0x0000003d

(2,9; 53 {0u00000035

(3,9) 54 {0u00000036

(2,8) 46 (0x0000002e

(3.8) 47 (00000002

(2,71 39 (0u00000027 ¥

(3,72 40 (000000028]

FIGURE 72: Fortran Array with Inverse Order and Limited Extent

As you can see, TotalView only shows elements in rows 2 and 3 of the array,
beginning with column 10 and ending with column 7.

Using Slices in the Variable Command

When you use the Variable command to display a Variable Window, you can
include a slice expression as part of the variable name. Specifically, if you
include an array name followed by a set of slice descriptions in the variable
dialog box, TotalView initializes the slice field in the Variable Window to the
slice descriptions that you specified.

If you include an array name followed by a list of subscripts in the variable
dialog box, TotalView interprets the subscripts as a slice description rather
than as a request to display an individual value of the array. As a result, you
can display different values of the array by changing the slice expression.

For example, suppose that you have a 20-element by 10-element Fortran
array named array2, and you want to display element (5,5). Using the
Variable command, you enter array2(5,5). This sets the initial slice to
(5:5,5:5).

You can tell TotalView to display one of the array’s values by enclosing the
array name and subscripts (that is, the information normally included in a

170 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Arrays

slice expression) within parentheses, such as (array2(5,5)). In this case, the
Variable Window just displays the type and value of the element and does
not show its array index. See Figure 73.

array? (24332,1)

{at 0x200008c0) Type: realkd{20,10) ﬁ
lice: i
Filter:
Index Yalue
(5,5 fiia)
=———————— {array2{b. B} (24322, 1}
ot 0x20000a10) Tupe: realkd i
Value: 55
=

FIGURE 73: Variable Window for array2

The top figure shows the information displayed for array2(5:5). The bottom
figure shows the information for (array2(5:5)).

Array Data Filtering

You can filter arrays of type character, integer, or floating point by specifying
a filter expression in the Filter field. Your filtering options are:

B Arithmetic comparison to a constant value

m Equal or not equal comparison to IEEE NANSs, INFs, and DENORMs

® Within a range of values, inclusive or exclusive

B General expressions

When an element of an array matches the filter expression, the element is
included in the Variable Window display.

You can also sort array elements into an ascending or descending order and
display statistical information about the array.

TotalView User's Guide

171

7 Examining and Changing Data
_ Arrays

Filtering by Comparison
Specify arithmetic comparisons to a constant value with the following for-
mat:

operator value

where operator is either a C/C+ + or Fortran style comparison operator, and
value is a signed or unsigned integer constant, or a floating-point number.
Table 23 lists the comparison operators.

TaBLE 23: Array Data Filtering Comparison Operators

Comparison C/C++ Operator Fortran Operator
Equal == .eq.

Not equal I= .ne.

Less than < It.

Less than or equal <= le.

Greater than > gt

Greater than or equal >= .ge.

The following figure shows an array whose filter is "< 100”. This indicates
that TotalView should only display array elements whose value is less than

100.
=——————— mazter_array {9567,3}

{at (140821068} Type: integer®4{100} ﬁ

icet (1
Filter: <100

Index Yalue

6} 1 E0x0000000L >

(2 8 {0x00000008

(32 27 (00000001}

(43 B4 (0000000403

5!

FIGURE 74: Array Data Filtering by Comparison
If the value you are using in the comparison is an integer constant, TotalView

uses a signed comparison. If you add a u or U to the constant, TotalView
performs an unsigned comparison.

172 TotalView User’s Guide Version 4.1

Examining and Changing Data

Arrays

Filtering for IEEE Values
You can filter IEEE NaN, infinity, or denormalized floating-point values by
specifying a filter in the following form:

operator ieee-tag

For operator, only the equal and not equal comparison operators listed in
Table 23 are allowed.

The iece-tag represents an encoding of IEEE floating point values, as
explained in the following table.

TABLE 24: Array Data Filtering IEEE Tag Values
IEEE Tag Value Meaning

Snan NaN (Not a number), either Quiet or Signaling
Snanq Quiet NaN

Snans Signaling NaN

Sinf Infinity, either Positive or Negative

Spinf Positive Infinity

Sninf Negative Infinity

Sdenorm Denormalized number, either positive or negative
Spdenorm Positive denormalized number

Sndenorm Negative denormalized number

Figure 75 shows an example of filtering an array for IEEE values. The top left
figure shows how TotalView displays the unfiltered array. Notice the INF, ~INF,
NANQ, and NANS values. This is followed by two filtered displays. The first
only shows the values of denormalized numbers. The second only shows
infinite values.

Filtering by Range of Values

Specify range expressions using the format:
[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies
the highest value to include, separated by a colon. By default, the high and

Version 4.1 TotalView User's Guide 173

7 Examining and Changing Data
_ Arrays

=—————"—"— icee_.icee_array (90E7.3) [AI=
» fat 0x1408213e0) Type: real*d{B} il
lices €3
Filter:
Index Yalue
13 INF = ieee_.ieec_array (9567.3) [Al=
2 -IMF ¥ {at 0x1408213e0) Tupei real®diGr 1
i3 Hahl Slice: (i}
4 Mahs Filter: .eq.$denorn
8 2,6524%-315
G -2,65249e-315 | Index Walue
(53 2.E5249e-31F |D——————————izee_.ieee_array (95E7.3} =—————(Al=
(8 285249315 (> (at (x1408213e0) Type: real#d(5) il
lice: {1}
Filter: ==%inf
Index Yalue
(1 INF
(2 -INF
=

FIGURE 75: Array Data Filtering for IEEE Values

low values are inclusive. If you specify a > before low-value, the low value is
exclusive. Similarly, a < before the high-value makes it exclusive.

The low-value and high-value must be constants of type integer, unsigned inte-
ger, or floating-point. The type of low-value must be the same as the type of
high-value, and low-value must be less than high-value. If low-value and high-value
are integer constants, they can be immediately followed by u or U, to force
an unsigned comparison. The following figure shows a filter applied to an
array such that only values equal to or greater than 64 but less than 512 are

displayed.
=——————— mazter_array {9567,3}

{at (140821068} Type: integer®4{100} j:t

icet (1
Filtery B43<512
Index Yalue
43 B4 (0000000403
[} 125 0x0000007d}
(B3 216 0000000483
£ 343 (0x00000157)
T

FIGURE 76: Array Data Filter by Range of Values

174 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Arrays

Array Filter Expressions
The filtering capabilities described in the previous sections are those that
are most often used. In some circumstances, you may want to create more
general filter expressions. When you create a filter expression, you are creat-
ing a Fortran or C Boolean expression that TotalView evaluates for every ele-
ment in the array or the array slice. For example, here is an expression that
displays all array elements whose contents are greater than 0 and less than
50 or greater than or 100 and less than 150.

(Bvalue > O 8&& $value < 50) ||

($value > 100 && $value < 150)

As TotalView looks at array elements, it sets the $value special variable to
the element’s value. It then evaluates your expression. So, if your array had
15 elements, this expression would be evaluated 15 times.

Notice also the use of the && operator to “and” the two parts of the Bool-
ean expression together. You can use any of TotalView's standard operators.
And, the way in which TotalView computes the results of an expression is
identical to the way it computes values at an evaluation point. For more
information, see “Defining Evaluation Points” on page 213.

NOTE However, you cannot use any of the IEEE tag values described in “Filtering
for IEEE Values" on page 173.

Filter Comparisons

TotalView lets you filter array information in a variety of ways—and these
ways can overlap. For example, the following two filters produce the same
result:

> 100
$value > 100

Similar, you obtain the same results with either of the following:

>0:<100

$value > 0 && Pvalue < 100
In both of these, the first method is easier to type than the second. In gen-
eral, you would use the second method if you were creating more compli-
cated expressions.

TotalView User's Guide 175

7 Examining and Changing Data
_ Arrays

Filtering Array Data
The procedure for filtering an array is quite simple: select the Filter field,
enter the array filter expression, and then press Return.

The Variable Window is updated to include only the elements that match the
filter expression.

TotalView applies the filter expression to each element of the array after any
array slice is applied. If the value of an element matches the filter expres-
sion, TotalView displays the element.

If necessary, TotalView converts the array element before evaluating the fil-
ter expression. The following conversion rules apply:

m [f the filter operand or array element type is floating-point, TotalView con-
verts it to a double precision floating-point value. Extended precision val-
ues are truncated to double precision. Converting integer or unsigned
integer values to double precision values may result in a loss of precision.
Unsigned integer values are converted to non-negative double precision
values.

m [f the filter operand or the array element is an unsigned integer, TotalView
converts the values to unsigned 64-bit integer.

m If both the filter operand and array element are of type integer, TotalView
converts the values to type 64-bit integer.

These conversions modify a copy of the array’s elements—they never alter
the actual array elements.

To stop filtering an array, delete the contents of the Filter field in the Variable
Window and press Return. TotalView will then update the Variable Window so
that it includes all elements.

Sorting Array Data

TotalView lets you sort the displayed array data into ascending or descend-
ing order. (It does not, of course, sort the actual data.) The sort commands
appear within the popup menu that you can display from within the Variable
Window. (See Figure 77.)

176 TotalView User’s Guide Version 4.1

Version 4.1

Clase All Similar Windows]
Update Process Info u

Duplicate”Nindow

Visualize u

Watchpoint on Yariable,..
gé;g.ﬁscending

Sort Descending

Search for String,.. /
Search Backward for String... A
Reexecute Last Search
Save Window to File,,.
Reexecute Last Save Window

Help “5

Examining and Changing Data

Arrays

FIGURE 77: Sort Items on the Process Pop Up Menu

If you select Sort Ascending, TotalView places all of the array’s elements in

ascending order. For example:

T check _fortran_arrays_:single_2dreal_array (34862,13 NN

{at Qufffffcla30d Type: real(100,100%
Slice: (1.1}
Filtery $wvalue < 10

]

Index Value {zorted azcending)

(1,1) 4,00352
(1,2} 5,00352
(1,3} 6.,00352
(1.4} 7.,00352
(2,1 7.00704
(1,5} 8.,00352
(2,2} 8,00704
(1,6} 9,00352
(2,3} 9,00704

<l

FIGURE 78: Sort Window

As you would expect, Sort Descending places array elements into a
descending order. The Unsort command (located above the Sort Ascending
and Sort Descending commands) returns the array to its original order.

The sort commands only manipulate the displayed elements. This means
that if you limit the number of elements by defining a slice or a filter, the
debugger only sorts the elements displayed by the slicing or filtering action.

TotalView User's Guide 177

178

7 Examining and Changing Data

Array Statistics

The Show Array Statistics command, which is also found on the Variable

popup menu, displays a window containing information about your array.
Here is an example:

TN Statistics for real8_array IO

(at OefFFFF3EI0Y Tupe: real®B{100,2000 [

Slice: (1.1}
Filter:
Count.: 19395
Zero County 9654
Sumy 3,65223463909070e+266
Minimum; 0
Hazimum; 1,21741154441696e+266
Hediang 2,29999995231628
Hean 1,82657396303614e+262
Standard Deviationy hahx0000000FFFEFFFF
First Ouartiley 0
Third Ouartiles 117,299995422363
Lower Adjacent:
Upper Adjacent: 230
Hah Count: 5
Infinity Count: 0
Denormalized County 230
Checksumy 4853
<]
| Continue

FIGURE 79: Array Statistics Window

If you have added a filter or a slice, these statistics only describe the infor-
mation that is being displayed; the statistics do not describe the entire
unfiltered array.

The statistics that are displayed are as follows:

m Checksum
A checksum value for the array elements.
® Count

The total number of displayed array values. If you are displaying a floating
point array, this number does not include NaN or Infinity values.

® Denormalized Count

A count of the number of denormalized values found in a floating point
array. This includes both negative and positive denormalized values as
defined in the IEEE floating point standard. Unlike other floating point

TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Arrays

statistics, these elements participate in the statistical calculations. (This
entry only appears if a floating point array is being displayed.)
Infinity Count

A count of the number of infinity values found in a floating point array.
This includes both negative and positive infinity as defined in the IEEE
floating point standard. These elements do not participate in the statis-
tical calculations. (This entry only appears if a floating point array is being
displayed.)

Lower Adjacent

This value provides an estimate of the lower limit of the distribution. Val-
ues below this limit are called outliers. The lower adjacent value is the first
quartile value less 1.5 times the difference between the first and third
quartiles.

Maximum

The largest array value.

Mean

The average value of array elements.

Median

The middle value. Half of the array’s values are less than the median and
half are greater than the median.

Minimum

The smallest array value.

NaN Count

A count of the number of NaN values found in a floating point array. This
includes both signaling and quiet NaNs as defined in the IEEE floating
point standard. These elements do not participate in the statistical cal~
culations. (This entry only appears if a floating point array is being dis-
played.)

Quartiles, First and Third

Either the 25th or 75th percentile values. The first quartile value means
that 25% of the array’s values are less than this value and 75% are greater

than this value. In contrast, the fourth quartile value means that 75% of
the array’s values are less than this value and 25% are greater.

m Standard Deviation

The standard deviation of the array’s values.

TotalView User's Guide

179

7 Examining and Changing Data
_ Displaying a Variable in All Processes or Threads

E Sum
The “sum” of all of the displayed array’s values.
m Upper Adjacent

This value provides an estimate of the upper limit of the distribution. Val-
ues above this limit are called outliers. The upper adjacent value is the
third quartile value plus 1.5 times the difference between the first and
third quartiles.

B Zero Count
The number of elements having whose value is 0.

Displaying a Variable in All Processes or Threads

When you are debugging a parallel program that is running many instances
of the same executable, or a multithreaded program, you usually need to
view or update the value of a variable in all of the processes (or threads) at
once.

To display the value of a variable in all of the processes in a parallel program,
first bring up a Data Pane displaying the value of a variable in one of the pro-
cesses. You can now use the:

® Toggle Laminated Display command from the Data Pane menu to display
the value of the variable in all of the processes.

B Toggle Thread Laminated Display command to display the value of a
variable in all threads within a single process.

NOTE You cannot laminate across processes and threads in the same data page
simultaneously.

The Data Pane switches to “laminated” mode, and displays the value of the
variable in each process or thread. Figure 80 shows a simple, scalar variable
in each of four processes of an MPI code. In the top window, all of the pro-
cesses have the variable in a matching stack frame, so the value is displayed
for all of them. In the bottom window, a corresponding variable cannot be
found, so that information is displayed in a Data Pane.

The top figure shows a laminated scalar. The bottom shows a laminated sca-
lar with missing call frames in some processes.

180 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Displaying a Variable in All Processes or Threads

T nain:rank (Laninated? (00
(at OxTFFF2c30) Typet int 1

Process Yalue

mpirun<flood>,0 (00000000 (0}
mpirun<flood>,1 00000001 (13
mpirun<flood>,2 00000002 (23
mpirun<flood>,3 00000003 (33

TN SetupRdatasrbuf Laninated? TN
(at OxPFFF2CT4) Tupe: int# i

Process Yalue

mpirun<floods,0 010043040 = Q00000000 {03
mpirun<flood>,1 <Haz no matching call frame:
mpirun<flood>,2 <Haz no matching call frame:
mpirun<flood>,3 <Haz no matching call frame:

4l

FIGURE 80: Laminated Scalar Variable

If you decide that you no longer want the pane to be laminated, use the
same command to delaminate it, and return it to being a normal Data Pane.

When looking for a matching stack frame, TotalView matches frames starting
from the top frame, and considers calls from different memory or stack loca-
tions to be different calls. For example:

int recurse (int i, int depth)

{
if i == 0)
return depth;
if (i&1)
recurse (i-1, depth+1);
else
recurse (i-3, depth+1);
}

The two calls to recurse generate non-matching stack frames.

If the variables are at different addresses in the different processes or
threads, the address field at the top of the pane displays (Multiple) and the
unique addresses are displayed with each data item, as shown in Figure 81.

TotalView also allows you to laminate arrays and structures. When you lam-
inate an array, each element in the array is displayed across all processors.
As with a normal Data Pane, you can use a slice to select elements to be dis-
played. Figure 82 shows an example of a laminated array and a laminated
structure. You can also laminate an array of structures.

TotalView User's Guide 181

7 Examining and Changing Data
_ Displaying a Variable in All Processes or Threads

TN maing argy {Laminated) NIRRT
{Multiple) Type: <string>ik ﬁ

Process Yalue

flood,0 (at OxFFFFFFad28) OxFFFFFfaddd - OxfFFFFFFRO00D > “/nfs/
flood,1 {at OxfFFFFfadcd) O0x10083600 —> OxfFFFFFFBOOO - “/nfs/vi
flood,2 {at OxfFFFFfadcl) O0x10083600 —> OxfFFFFFFBOOO - “/nfs/vi
flood,3 {at OxFFFFFFadcl) O0x10083600 —> OxfFFFFFFBOOO - "/nfs/vi

<

FIGURE 81: Laminated Variable at Different Addresses

o—l||IIII waingr tLaminated? [INIMNIIRANIHM0Inn
{at 0x7FFF2e30) Tupe: MPI_Request[16] {3
lice: [:]
Index Value
[0l {Laminate}

mpirun<floods, 2 Qx00000000 {0}

| mpirun<flood>,3 0=00000000 {0}

[11 {Laminate?
mpirundfloody,0 0x0fbB9e3c (2636263003
wpirun<flood>,1 Ox0fbE9e3c {2B63626300%

[mpirun<flood>, 0 0x00000000 {0}
9 mpirun<flood>,1 0x00000000 (0

. b ;
e o AR nainsE0] (Laninated> MTMIITTTTIZI
> lat 0x7FFF2caB) Type: MPI_Status L]
Field Type Yalue
Procezs mpirundfloodr,0
[MPI_SOURCE int OueO0000003 (33
MPI_TAG int 000000006 {63
MPI_ERROR int 000000000 (03
zize int OueO0Z200000 (2097152
reserved int[2] {Array?
[int OxOO000000 {0}
| [11 int 0x0000003fF (B3}
Process mpirundflood>,1
MPI_SOURCE int 000000003 {33
MPI_TAG int Oxfffffife (=20
0— MPI_ERROR int OueO0000a00 {0
size int OxO0200000 (2097152
reserved int[2] CArrayy
[0l int (00000000 €0}
[11 int OxOO00003F (B3}

O Laminated array

® Element [0] for each of the processes
© Structure elements for one process
® Laminated structure

FIGURE 82: Laminated Array and Structure

Diving in a Laminated Pane

You can dive through pointers in a Laminated Data Pane, and the dive will
apply to the associated pointer in each process or thread.

182 TotalView User’s Guide Version 4.1

Examining and Changing Data

Visualizing Array Data

Editing a Laminated Variable

If you edit a value in a laminated Data Pane, TotalView asks if it should apply
this change to all of the processes or threads or only the one in which you
made a change. This is also an easy way to update a variable in all of the pro-
cesses such as a global debug flag.

Visualizing Array Data

The TotalView Visualizer is part of a suite of software development tools for
debugging, analyzing and tuning the performance of programs. It works with
TotalView to create graphic images of array data in your programs. This lets
you see your data in one glance and quickly find problems with it as you
debug your programs.

The Visualizer is implemented as a self-contained process. It can be
launched directly by TotalView to visualize data as you debug your pro-
grams. Alternatively, you can run the visualizer from the command line to
visualize data dumped to a file in a previous TotalView session.

For information about running the TotalView Visualizer, see Chapter 9, “Visu-
alizing Data” on page 247.

Visualizing a Laminated Data Pane

You can export data from a laminated Data Pane to the visualizer using the
Visualize command. However the process (or thread) index will be the first
axis of the visualization, and therefore you must use one fewer data dimen-
sion than you normally would. If you do not want the process/thread axis to
be significant in the visualization, you can use a normal Data Pane, since all
of the data must necessarily be in one process.

Displaying Thread Objects

On some platforms, TotalView can display information about thread
objects, which are objects that let you coordinate your application’s

Version 4.1 TotalView User's Guide 183

184

7 Examining and Changing Data
_ Displaying Thread Objects

threads. The objects for which TotalView can display information are
mutexes, condition variables, read-write locks, and pthread-specific data

keys.

Displaying Mutex Information

NOTE The Mutex Information Window is supported only on Compaq Tru64 UNIX

and AIX systems.

A mutex is a mutual exclusion object that allows multiple threads to syn-
chronize access to shared resources. A mutex has two states: locked and
unlocked. Once a mutex is locked by a thread, other threads attempting to
lock it will block. Only after a locking thread unlocks (releases) the mutex
can one of the blocked threads acquire (lock) the mutex and proceed.

The Mutex Information Window contains a list of all mutexes known in a pro-
cess. You can tell TotalView to display this window if you place your cursor in
the Process Window and then select the Mutex Info Window command
from the Process State Info menu. If you are using a Compaq Tru64 UNIX
system, TotalView responds by displaying the window shown in the follow-

Mutexes for "fork_loop" (208967

ing figure.
I Tuype
11
2 1N
3 2R
4 1N
51N
B 1N
716N
B 1N
3 1M
10 1 (N
111 6N
12 1o
13 16
14 1 oM
15 1 (N
16 1o
17 1 i
2

Ry

Flagz Ouner Address Mame
0x2 (L) 1 Ox003FFeO0B2F 70

0x2 (L) 1 0x003FFcO0B2740

0x2 (L) 1 Ox003FFe00B27d0

0x2 (L) 1 Ox003fFc0052818

0x2 4L) (x003FFo01B8a908

0x2 (L) (0x003FFoilBareld

0x2 §L) Ox00ZFFe0185970

0x2 (L) (x003FFeilBhak0

0x2 §L) (x003FFoil85b50

0x2 (L) x00ZFFe0185240

0x2 (L) (x003FFeilB85d30

0x2 4L) (x00ZFFoilBh500

0x2 (L) (x003FFoilBhE6a0

0x2 §L) OxO0ZFFei1857 90

0x2 (L) (x003FFoil 85880

0x2 §L3 Ox003FFe01830d8

0x0 (Ox003FFe0l1B3:30

0x3 GLIMD 1 O0x003fFcO0B0bad Global lock

[

FIGURE 83: Compaq Tru64 UNIX Mutex Info Window

TotalView User’s Guide

Version 4.1

Version 4.1

Examining and Changing Data

The window displayed on AIX systems is:

Recurs
Mormal
Hormal
Mormal
Hormal
Mormal
Hormal
Mormal

9 MNormal
10 Mormal
11 HNormal
12 Mormal
13 Normal
14 Mormal
15 HNormal

Unlocked
Unlocked
Unlocked
Unlocked
Unlocked
Unlocked
Unlocked

Locked

Unlocked
Unlocked
Unlocked
Unlocked
Unlocked
Unlocked
Unlocked

FIGURE 84: AIX Mutex Info Window

ID

Type

" E E E E E E N NN N NN NN E NN N NN EE N EEEEEEE BN []
Displaying Thread Objects =
Mutexes for "fork_loop" (204423
Pzhared Owner Addres= j:t
Private (0000000 f 001l
Private O00000000F000FeF(
Private Ope0000000F 0L 0020
Private O00000000F0010030
Private Ope0000000F OOLOLF &
Private O00000000F0010155
Private Ope0000000F (b &
Private 2 Ox000000002000160
Waiting: 4
3
Private Ope000000020001 B
Private D 0000000020001820
Private Ope 000000020001 858
Private D 0000000020001890
Private Ope000000020000F 30
Private Oc0000000020000FbE
Private Ope00OO0020000F £ Iy
For each mutex, TotalView displays the following information:
The sequence number assigned to a mutex by the
threads package. Diving into this field opens a data
window containing a view of the mutex’s data.
Hutex 3 (25987.121)
{at 0x3fFcO0B27d0r Type: pthread_mutex_t j:t
Field Type Walue
lock unzigned int DL 300000 (19922944
valid unzigned int e0dbcafel (230463601
name <string* (el
arg unzigned int CpeQOOO0N00 {03
depth unzigned int pe0OOO000L {13
sEqUEnCE unzigned long (eOOOOONOAAO0GGNNE {3y
ouner unzigned long eOQERANOAAOLEGNNL {1y
black voidk 0x140002310 > 0x0000000140002390 (53
=
FIGURE 85: Mutex Data Window on Compaq Tru64 UNIX
The mutex type. These types are set using the
pthread_mutexattr_settype() call on the attribute
object before the mutex is initialized.
Compaq Tru64 UNIX: This is a mutex type number
and a single-character abbreviation of the type name.
TotalView User’s Guide 185

186

Examining and Changing Data

Displaying Thread Objects

N—A normal mutex.
R—A recursive mutex.

E—An error-check mutex. Error-check mutexes con-
tain additional information for use in debugging, such
as the thread ID of the locking thread. During program
development, you should use error-check mutexes in
place of normal mutexes, and only switch to the sim-
pler version when performance becomes an issue.

While your system may have other types available,
TotalView only shows these three types.

AIX: The type is one of the following:
Normal—A Normal mutex.

Recurs—A recursive mutex.

ErrChk—An error check mutex.

NRecNP—A non-portable, non-recursive mutex.
RcurNP—A non-portable, recursive mutex.

FastNP—A non-portable fast mutex.

Flags (Compaq Tru64 UNIX only)

TotalView User’s Guide

This column contains hex strings that describe the cur-
rent mutex flags and a one-character abbreviation for
some flags:

0x8 (M): Metered. The mutex contains metering infor-
mation.

0x4 (W): Waiters. One or more threads are waiting for
this mutex. By default, waiting threads are shown in red;
their color is the same as the thread’s error state flag color.

0x2 (P): Locked. The mutex is locked. By default, locked
mutexes are shown in blue; their color is the same as the
thread'’s stopped state flag color.

0x1 (N): Name. This mutex has a name.

While your system may use additional flag bits, Total-
View only shows names for these flags.

Version 4.1

Version 4.1

Examining and Changing Data

State (AIX only)

Pshared (AIX only)

Owner

Address

Displaying Thread Objects

The mutex lock state is displayed as follows:
Unlocked—The mutex is unlocked.

Locked—The mutex is locked. By default, this is shown
in blue; its color is the same as the thread’s stopped
state flag color.

This value indicates if the mutex is shared by other
processes.

Private—The mutex can only be manipulated by
threads in the process that initialized the mutex.

Shared—The mutex can be manipulated by any thread
that has access to the mutex’s memory. (Some ver-
sions of IBM'’s system libraries cannot provide infor-
mation on shared mutexes to TotalView. If this
information is not available, TotalView only describes
private mutexes.)

If the mutex is locked, this field displays the locking
thread’s system TID.

NOTE On Compaq Tru64 UNIX, the owner TID is only
available for error-check mutexes.

Diving or selecting on this number tells TotalView to
display the locking thread’s Process Window. This is
the same window that TotalView would displays if you
dive or select the thread's entry in the Root Window.

If threads are waiting for this mutex, their system TIDs
are shown in the owner field, with one thread ID dis-

played on each line. You can open a Process Window
for these waiting threads by diving or selecting on its

number.

NOTE If TotalView cannot obtain this information, it does
not show blocked thread lines.

This field contains the memory address of the mutex.
You can open a data window containing a view of the
mutex’s data by diving on this field. (This window
appeared previously in this section.)

TotalView User's Guide

187

188

7 Examining and Changing Data
_ Displaying Thread Objects

Name (Compaq Tru64 UNIX only)
If the mutex has a name, it is shown here. If you are us-

Displaying Condition Variable Information

ing version 4.0D or later of the operating system, the
pthread_mutex_setname_np() routine provides the
mutex’s name. However, this routine is not portable.

The window that displays the condition variables lists all the condition vari-
ables known in this process.

NOTE The Condition Variables Window is supported only on Compaq Tru64 UNIX

and AIX systems.

You can tell TotalView to display its Condition Variables Window if you place
your cursor in the Process Window and then select the Condition Variable
Info Window command from the Process State Info menu. If you have an
Compagq Tru64 UNIX system, TotalView displays the following window.

L0000~ O O] 4) D
f=3
b
f=3

OeeOOZFF 0022870
e DOZFFOLB308
OeeD03FFLOLE3060
ee003FFLOLBbOTO
Ouc003FFeOLBh0cs
Oec0000140002448
Oec0000L400024 30
Oec00Q0L 40000748

3

<l

FIGURE 86: Compaq Tru64 Condition Variable Window

If you have an AIX system, here is the window that you will see:

Condition Yariables for “fork_loop" (204403

ID Pshared

1 Private
2 Private
3 Private
4 Private
5 Private
E Private

[Maiters] Mutesx Address

OxOOOO0000FON0FF24
Qx00000000F 0010044
Cx00000000F 0010064
Cx00000000F001022
Cx00000000F00101 b
16 0x000000002000160

Waitingt 2

£

<l

FIGURE 87: AIX Condition Variable Window

TotalView User’s Guide

Version 4.1

Examining and Changing Data

Displaying Thread Objects

For each condition variable, TotalView displays the following information:

ID The ID is the sequence number assigned to this condi-
tion variable by the threads package. Diving into this
field opens a data window containing a view of the
condition variable’s data. This window is shown in

Figure 88.
Condition varisble 6 (20440)

{at (x200016e0) Type: pthread_cond_t j:t
Field Type Value
__ptov_dbx unsigned long Q00000000 0%
__reservedl int (20048208 (0371834160
__ptov_lock __ptlock_type 00000000 {03
__ptoyv_flags int Q00000004 (43
__ptov_waiters __pt_queusk Q0000000
__reserved? int (2006508 (B37288200%
__cv_id int CaDO00000E (6>
__oy_mutex unsigned int 00000000 {03
__reserveds int (00000468 (3432
__cptwait int 000000002 {23
__reserved int CeeQOOOOD00 {0 1:;

FIGURE 88: Compaq Tru64 UNIX Condition Variable Data
Window

Flags (Compaq Tru64 UNIX only)
The information in this column is a hex string contain-
ing the current condition variable’s flags and a one-
character abbreviation for some of the flags:

0x8 (M): Metered. This condition variable contains
metering information.

0x4 (W): Waiters. One or more threads is waiting for
this condition variable. By default, this is shown in red,
which is the same as the thread’s error state flag color.

0x2 (P): Pending. A wakeup is pending for this condi-
tion variable. By default, this is shown in blue; its color
is the same as the thread's stopped state flag color.

0x1 (N): Name. The condition variable has a name.

While your system may use more flags, TotalView only
shows these four flag names.

Pshared (AIX only) This value indicates if the condition is shared by other
processes.

Version 4.1 TotalView User's Guide 189

7 Examining and Changing Data
_ Displaying Thread Objects

Private—The condition value can only be manipulated
by threads in the process that initialized it.

Shared—The condition value can be manipulated by
any thread that has access to its memory. (Some ver-
sions of IBM's system libraries cannot provide infor-
mation on shared condition values to TotalView. If this
information is not available, TotalView only describes
private condition values.)

Waiters If threads are waiting for this condition variable, the
debugger displays their system TIDs, one thread for
each line, on the lines following the condition variable.
Diving or selecting entries in the list of waiting threads
open windows for them.

NOTE If TotalView cannot obtain this information, it does
not show waiting threads.

Mutex This field contains the ID of the mutex that guards the
condition variable. If TotalView can translate the ID
into an address, diving into this field opens a data win-
dow containing a view of the guard mutex’s data.

TotalView can only translate this ID if it was correctly
initialized. That can be done statically or by using an
attributes object. See the mutex and condition vari-

able man pages for more information.

Address This field has the condition variable’s memory address.
Diving into the address field opens a data window con-
taining a view of the actual condition variable’s data.

Name (Compaq Tru64 UNIX only)
If the condition variable has a name, it is shown here.
If you are using version 4.0D or later of the operating
system, the pthread_mutex_setname_np() routine
provides the condition variable’s name. However, this
routine is not portable.

190 TotalView User’s Guide Version 4.1

Version 4.1

Examining and Changing Data

Displaying Thread Objects

Displaying Read-Write Lock Information

NOTE The Read-Write Lock Information Window is supported only on AIX systems.

Aread-write lock is a mutual exclusion object that allows multiple threads to
synchronize access to shared resources. A read-write lock has three states:
free, read-locked, and write-locked. A free lock can be locked by any number
of readers or by one writer. Once a read-write lock is locked by a thread for
one kind of access, other threads attempting to lock it for the other kind of
access will block. When locking threads unlock (release) the read-write lock,
blocked threads can acquire (lock) it and proceed.

The Read-write Lock Information Window contains a list of all read-write
locks known in this process. You can tell TotalView to display its Read-write
Lock Window if you place your cursor in the Process Window and then select
the Read-Write Lock Info Window command from the Process State Info
menu. TotalView responds by showing in the following figure.

Read-Write Locks for "fork_loop" {20438
I State Pshared Owneris) Address Q
......... 1 Nmteppwate0)(0000000020001?48
Waiting to write: 4
=

FIGURE 89: Read-Write Lock Info Window

For each read-write lock, TotalView displays the following information:

ID This field contains the sequence number assigned to
this read-write lock by the threads package. Diving into
this field opens a data window containing a view of the
actual read-write lock data.

State This field displays the read-write lock state as follows:
Free—Unlocked.

Read—Locked for reading. By default, this is shown in
blue; its color is the same as the thread’s stopped state
flag color.

TotalView User's Guide

191

192

7 Examining and Changing Data
_ Displaying Thread Objects

Pshared

Owner

Address

TotalView User’s Guide

Write—Locked for writing. By default, this is shown in
blue; its color is the same as the thread’s stopped state
flag color.

This value indicates if the read-write lock is shared by
other processes.

Private—The read-write lock can only be manipulated
by threads in the process that initialized it.

Shared—The read-write lock can be manipulated by
any thread that has access to its memory. (Some ver-
sions of IBM's system libraries cannot provide informa-
tion on shared read-write locks to TotalView. If this
information is not available, TotalView only describes
private read-write locks.)

If the read-write lock is locked, this field displays the
system TID of the locking thread. Diving or selecting on
this number tells TotalView to display the Process Win-
dow for the locking thread. TotalView displays the
same window if you dive or select the thread's entry in
the Root Window.

If threads are waiting for this read-write lock, their sys-
tem TIDs are shown in the owner field, with one thread
ID being displayed for each line in the window. You can
open a Process Window for a waiting thread by diving
or selecting its number.

If TotalView cannot obtain this information, it does not
show blocked thread lines.

NOTE Some versions of IBM's system libraries cannot pro-
vide the correct owner TID for read-write locks locked for
reading. In these cases, the owner TID can only be trusted
when it the lock is in its write state.

The memory address of the read-write lock. You can
open a data window containing a view of the read-write
lock data by diving on this field. The window TotalView
displays is as follows:

Version 4.1

Version 4.1

Displaying PThread-Specific Data Key Information

Examining and Changing Data

Displaying Thread Objects

Read-write lock 1 (20438}

{at (x20001748) Type: pthread_rulock_t j;i

Field Type Value

_pad int Q0000000 07

__ptrlock_dbx unsigned long 020048228 (h37163448)

__rul_mutesx pthread_mutex_t {Compound Object}
__ptg_link __Ptg_queue® (00000000
__reservedl int CeeQOO0OD00 {0
__ptmtx_lock __ptlock_type 00000000 {03
__ptmtx_flags int 000000001 {13
__ptmtx_ouner pthread_t 00000000 {03
__mtx_id int Q0000000 {03
__acquisitions int 00000000 {03
__mtx_kind int (0000005 (53
__lock_cpt int 00000000 {03
__sleeps int 00000000 {03
__miszes int CeeQOO0OD00 {0
__reserved? int CeeQOO0OD00 {0
__phmtx_dbx unsigned long 00000000 {03

__rul_rsleepers pthread_cond_t {Compound Object}
__ptov_dbx unsigned long 00000000 {03

FIGURE 90: Read-Write Lock Data Window

NOTE The Key List Window is supported only on AlX systems.

A pthread-specific data key is an object that can have a distinct pointer

value of type void * associated with it for each pthread in a process.

The Key List Information Window contains a list of all keys known in this pro-
cess. You can tell TotalView to display its Key List Window if you place your
cursor in the Process Window and then select the Key Info Window com-
mand from the Process State Info menu. TotalView responds by displaying

the following figure.

Keys for "tzd_get" {0316}

II Thread

Yalue

>

[R Y
L e e e

Q0000000000000
Q0000000000000
Q0000000000000
Q0000000000000
Q0000000000000
Ce0000000020002248
C0000000020002258

4l

FIGURE 91: Key List Window

TotalView displays information for each key. Many applications initially set
keys to zero (which is the NULL pointer value). Note that a key’s information

TotalView User's Guide

193

7 Examining and Changing Data
_ Displaying Thread Objects

is not displayed until a thread sets a value for it, even if the value set is
NULL.

ID This field contains the sequence number assigned to
this key by the threads package. Only the line for the
first thread’s value for a key will contain an ID; subse-
quent lines for the same key omit the ID as a way of
visually grouping values with the same ID.

Thread This field has the system TID of the thread that has a
value for this key. Diving or selecting on this number
tells TotalView to display the Process Window for the
thread. TotalView displays the same window if you dive
or select the thread’s entry in the Root Window.

Value This field contains the contents of the key for a
pthread. Diving into this field opens a data window
containing a view of the actual key data.

key B (h318)

[

{at 0x20002248) Type: <wvoid:

Yalue: 0x00000102 (208

4l

FIGURE 92: Key Data Window

194 TotalView User’s Guide Version 4.1

Chapter 8

Setting Action Points

This chapter explains how to use action points. TotalView supports four kinds of
action points: breakpoints, process barrier breakpoints, evaluation points, and
watchpoint. A breakpoint stops execution of processes and threads that reach it.
A process barrier breakpoint holds each process that reaches it until all processes
from the group reach it. An evaluation point causes a code fragment to execute
when it is reached. A watchpoint lets you monitor a location in memory and stop
execution when the value stored in memory is modified.

In this chapter, you'll learn how to:

Set breakpoints

Set evaluation points

Set conditional breakpoints
Set watchpoints

Patch programs

Set process barrier breakpoints
Choose between interpreting and compiling expressions
Control action points

Save action points in a file
Evaluate expressions

Write code fragments

Write assembler code (Compaq Tru64 UNIX, IBM AlX, and SGI IRIX systems
only)

Version 4.1 TotalView User's Guide 195

Setting Action Points
“ Action Points Overview

Action Points Overview

Actions points allow you to specify an action that will be performed when a
thread or process reaches a source line or machine instruction in your pro-
gram. TotalView supports the following types of action points:

B Breakpoints

When a thread or process encounters a breakpoint, it stops at the break-
point along with the other threads in the process. You can also arrange
for other related processes to stop when the breakpoint is hit.
Breakpoints are the simplest type of action point.

® Process barrier breakpoints

Process barrier breakpoints are similar to simple breakpoints, differing in
that they are used to synchronize a group of processes in a multiprocess
program. Process barrier breakpoints work together with the TotalView
hold and release process feature.

m Evaluation points

An evaluation point is a breakpoint that has a code fragment associated
with it. When a thread or process encounters an evaluation point, it exe-
cutes this code. Evaluation points can be used in several different ways,
including conditional breakpoints, thread-specific breakpoints, count-
down breakpoints, and patching code fragments into and out of your
program.

m Watchpoints
A watchpoint lets you indicate that if a location in memory changes,
TotalView should perform one of the following kinds of actions: stop the
thread so that you can interact with your program or evaluate an expres-
sion. The first kind of watchpoint is analogous to a breakpoint; the sec-
ond is analogous to an evaluation point.

All action points share some common properties. They:

B Can be enabled or disabled independently. A disabled action still exists;
however, when your program reaches a disabled point, it continues exe-
cuting.

B Can be shared across multiple processes, or set in individual processes.

m Apply to the process, so in a multithreaded process, it applies to all of the
threads.

196 TotalView User’s Guide Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

B Are assigned unique action point ID numbers. They appear in several
places, including: the Root Window, the Action Points Pane of the Process
Window, and the Action Points Options dialog box.

Each type of action point has a unique symbol. The following figure shows
examples of some enabled and disabled action points:

Breakpoint

Process barrier breakpoint
Evaluation point
Assembler-level action point
Disabled breakpoint
Disabled barrier breakpoint
Disabled evaluation point

[N~ loT—

')

Figure 93: Action Point Symbol

The ASM icon indicates that there are one or more assembler-level action
points associated with the source line.

Setting Breakpoints and Barriers

TotalView has several options for setting breakpoints. You can set:

m Source-level breakpoints

B Machine-level breakpoints

B Breakpoints that are shared among all processes in multiprocess pro-
grams

You can also control whether or not TotalView stops all processes in the pro-

gram group when a single member reaches a breakpoint.

NOTE Breakpoints apply to the entire process, not just to a single thread. If any
thread executing in the process reaches the breakpoint, TotalView will stop the pro-
cess.

Setting Source-Level Breakpoints

Typically, you set and clear breakpoints before you start a process. To set a
source-level breakpoint, select a boxed line number in the tag field of the
Process Window. (A boxed line number indicates that the line is associated

Version 4.1 TotalView User's Guide 197

198

Setting Action Points
“ Setting Breakpoints and Barriers

with executable code. A STOP icon, as is shown in the following figure, lets
you know that a breakpoint is set immediately before the source statement.

O Breakpoint
® Boxed number
® Gridget

Figure 94: Breakpoint Symbol

You can also set a breakpoint while a process is running by selecting a boxed
line number in the tag field of the Process Window. If you set a breakpoint
while the process is running, TotalView temporarily stops the process so it
can insert the breakpoint and then continues running.

Selecting Ambiguous Source Lines

If you are using C+ + templates, a single source line could generate multiple
function instances. If you attempt to set a source-level breakpoint by se-
lecting a line number in a function template, and that line number has more
than one instantiation, TotalView will prompt you with an Ambiguous
Source Line Selection dialog box, as shown in Figure 95.

Use the following procedure to resolve the ambiguity.

1 Select functions by checking All, which selects all functions, None,
which deselects all functions, or individual checkboxes, which lets
you select and deselect functions.

TotalView places the function name within the Function specification
area when one box is checked. Selecting additional function prototypes
clears this field.

2 Select one of the following:
Toggle, which changes the state of the action points.

Enable, which enables the action points, or create breakpoints or pro-
cess barrier breakpoints for any that did not already exist.

Disable, which disables the action point.

TotalView User’s Guide Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

The source line you have specified iz ambiguous,
Please choose one or more of the containing functions in the =election pane.
or type in an unambiguous specification below,

All action points will be in file "names,cxx" at line 324,

0

ayaptfloaté, floaté
ayaplintd, intdl

Function specification

Boaplintd, intd}

Select the action to be performed:

O Toggle ® Enable O Disable O Clear

Figure 95: Ambiguous Source Line Selection Dialog Box

Clear, which deletes default breakpoints or process barrier breakpoints,
and disable others.

3 Select the OK button or press Return to perform the action. If you
hold down the Shift key, TotalView performs the action for process
barrier breakpoints.

Diving into Ambiguous Source Lines

Similar to selecting an ambiguous source line, if you dive on an ambiguous
source line, TotalView displays the Ambiguous Source Line dialog box,
shown in Figure 96, before it displays the Action Point Options dialog box.

The procedure for resolving ambiguous source lines is similar to the proce-
dure described in “Selecting Ambiguous Source Lines” on page 198.

As with other action point function menus, you can specify more than one
function. However, if you do, the Referenced current source lines either
must not contain action points, or must contain action points of the same

Version 4.1 TotalView User's Guide 199

Setting Action Points
“ Setting Breakpoints and Barriers

e zource line you have specified iz ambiguous,
eaze chooze one or more of the containing functions in the selection pane,
type in an unambiguouz specification below,

1 action points will be in file "names,cxx" at line 324,

ayaptfloaté, floaté
ayaplintd, intdl

Function specification:

Boap(floatd, floatd}

Figure 96: Ambiguous Source Line Dive Dialog Box

type. This is because the Action Point Options dialog box appears, and the
selections you make in it apply to all selected action points.

Toggling Breakpoints at Locations

You can toggle a breakpoint at a specific function or source line number
without having to first find the function or source line in the Source Code
Pane using the following procedure:

1 Invoke the Breakpoint at Location command in the STOP/BARR/
EVAL/ELOG menu of the Process Window. The Toggle breakpoint
dialog box appears (as shown in Figure 97).

2 Enter the name of the function or a source line number.

Entering a function name tells TotalView to toggle the breakpoint at the
function’s first executable source line. Entering a source line number tog-
gles the breakpoint at the source line in the current source file.

200 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

Toggle breakpoint at location:

fuapll

Figure 97: Toggle Breakpoint at Location Dialog Box

3 Select OK or press Return. If you hold down the Shift key, this com-
mand toggles a process barrier breakpoint at this location.

The behavior of the Breakpoint at Location command depends on whether

an action point already exists at the selected location, and whether you

hold down the Shift key when you select OK or press Return, as described in

the following table.

Table 25: Breakpoint at Location Actions

Location Content OK Action Shift-OK Action
Empty Create STOP Create BARR
STOP Delete/disable STOP Convert to BARR
BARR Delete/disable BARR Convert to STOP
EVAL Disable EVAL Disable EVAL

Ambiguous Locations

If you enter an ambiguous function name with the Breakpoint at Location
command, TotalView displays its Ambiguous Function Name dialog box
(see Figure 98 on page 202).

The procedure for resolving ambiguous function names is similar to the pro-
cedure described in “Selecting Ambiguous Source Lines” on page 198.

Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code or
source interleaved with assembler. (Refer to “Examining Source and Assembler
Code” on page 118 for information.) You can now select the tag field oppo-
site an instruction. The tag field must contain a gridget—the gridget indi-

TotalView User's Guide

201

Setting Action Points
“ Setting Breakpoints and Barriers

The function name you have specified iz ambiguous,
Pleaze choose one or more of the functions in the selection pane,
or type in an unambiguous specification below.

O swapifloath, floath}
names., cxx 323
swaptintk, intdy
names, cxx 323

Function specification;

Buapiinté, inté&)

Select the action to be performed:

® Toagle O Enable O Dizable O Clear

Figure 98: Ambiguous Function Name Dialog Box

cates the line is the beginning of a machine instruction. Since instruction
sets on some platforms support variable-length instructions, you may see
multiple lines associated with a single gridget. The STOP icon appears, indi-
cating that the breakpoint occurs before the instruction is executed.

When the Source Code Pane displays source interleaved with assembler,
source statements are treated as if they were comments: they are not
treated as executable statements. Because they are treated as comments,
you cannot set breakpoints on them. If you set a breakpoint on the first in-
struction after a source statement, however, you are actually creating a
source-level breakpoint.

If you set machine-level breakpoints on one or more instructions that are
part of a single source line and then display source code in the Source Code
Pane, TotalView displays an ASM icon (see Figure 93) on the line number. To
see the specific breakpoints, you must display assembler or assembler in-
terleaved with source code.

202 TotalView User’s Guide Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

When a process reaches a breakpoint, TotalView:

B Suspends the process.
m Displays the PC symbol over the stop sign to indicate that the PC cur-
rently points to the breakpoint.

® Displays at breakpoint in the Process Window title bar and other win-
dows.

m Updates the Stack Trace and Frame Panes and Variable Windows.

Thread-Specific Breakpoints

TotalView implements thread-specific breakpoints through evaluation
points in the TotalView expression system. The expression system has sev-
eral intrinsic variables that allow a thread to retrieve its thread ID. For exam-
ple, the following example sets a breakpoint that stops the process only
when thread 3 executes the evaluation point:

/¥ Stop when thread 3 evaluates this expression. */
if ($tid == 3) $stop;

Breakpoints for Multiple Processes

In multiprocess programs, you can set breakpoints in the parent process
and child processes before you start the program and at any time during its
execution. To do this, use the Action Point Options dialog box, as shown in
Figure 99. This dialog box provides three checkboxes for process groups:

B Stop All Related Processes when Breakpoint Reached

If selected, stops all members of the program group when the breakpoint
is reached. Otherwise, only the process that reaches the breakpoint
stops.

B Stop All Related Processes when Barrier Breakpoint Hit

If selected, stops all members of the program group when the barrier
breakpoint is reached. Otherwise, only the process reaching the barrier
stops.

m Share Action Point in All Related Processes
If selected, enables and disables the breakpoint in all members of the
share group at the same time. If this is not selected, you must enable and
disable breakpoints in each share group member individually.

Version 4.1 TotalView User's Guide 203

204

Setting Action Points
“ Setting Breakpoints and Barriers

You can control the default setting of these checkboxes using X resources or
command line options. See Figure 99.

Breakpoint
B Stop ALl Related Processes when Breskpoint Hit

i Process Barrier Breskpoint
B4 Stop All Related Processes when Barrier Breskpoint Hit

tEvaluate Expression

E G R

ilog Gist Event Event Hame: [
Variable to Tracks | |
Fornat String: |

B Action Point Enabled
B4 Share Action Paint in A1l Related Processes

| i Clear j [Abort f [Delete §

Action Point 1t lire 335 in maint(x174 file "tzsort.c”

Figure 99: Action Point Options Dialog Box

The two checked boxes at the top of this figure indicate that TotalView will
stop members of the program group when the action point is encountered.
The check box at the bottom indicates that the action point is set in all
members of the share group.

The action point ID is displayed at the bottom of the window.
For more information, refer to:

B “TOTALVIEW*STOPALL” on page 292

B "TOTALVIEW*STOPALLRELATEDPROCESSESWHENBREAKPOINTHIT” on page
292

B "TOTALVIEW*SHAREACTIONPOINT” on page 290
m “TotalView Command Syntax” on page 299

In addition to the controls in the Action Point Options dialog, you can place
an expression in the expression box to control the behavior of program

TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

group members and share group members. Refer to “Writing Code Fragments”
on page 235 for more information.

Breakpoint when using fork()/execve()

You must link with the dbfork library to debug programs that call fork() and
execve(). See “Compiling Programs” on page 11.

Processes That Call fork()

By default, breakpoints are shared by all processes in the share group. When
any process reaches a breakpoint, TotalView stops all processes in the pro-
gram group. To override these defaults:

1 Dive into the tag field to display the Action Point Options dialog box.

2 Deselect the Stop All Related Processes when Breakpoint Hit and Share
Action Point in All Related Processes checkboxes then select OK.

Processes That Call execve()

Breakpoints that are shared by a parent and children with the same execut-
able do not apply to children with different executables. To set the break-
points for children that call execve():

1 Set the breakpoints and breakpoint options desired in the parent and
the children that do not call execve().

2 Start the multiprocess program by displaying the Go/Halt/Step/Next/
Hold menu and selecting the Go Group command. When the first child
calls execve(), TotalView displays the following message:

Process name has called exec (name),
Do you wish to stop it before it enters MAIN?

3 Answer Yes. TotalView opens a Process Window for the process. (If
you answer No, TotalView will not allow you to set breakpoints.)

4 Set breakpoints for the process. After you set breakpoints for the first
child using this executable, TotalView does not prompt when other
children call execve() to use it. Therefore, if you do not want to share
the breakpoints among other children using the same executable,
dive into the breakpoints, and set the breakpoint options.

5 Select the Go Group command from the Go/Halt/Step/Next/Hold menu
to resume execution.

TotalView User's Guide

205

206

Setting Action Points
“ Setting Breakpoints and Barriers

Example: Multiprocess Breakpoint

The following example program illustrates the different points at which you
can set breakpoints in multiprocess programs:

pid = fork(;
if (pid == -1)
error ("fork failed";
else if (pid == 0)
children_play0;
else
parents_work0;

NOO,~MWN =

Table 26 shows the results of setting a breakpoint at different places.
Table 26: Setting Breakpoints in Multiprocess Programs

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes (if the child pro-
cess was successfully created).

3 Stops the parent process if fork() failed.
Stops the child process.
7 Stops the parent process.

Process Barrier Breakpoints

A process barrier breakpoint (process barrier point) is similar to simple
breakpoint, differing in that it holds processes that reach the process barrier
point. TotalView holds each process until all the processes in the group
reach the same process barrier point. When the last process reaches the
same barrier point, TotalView releases all processes in the group.

Process Barrier Breakpoint States
Processes at a process barrier point are held or stopped, as follows:

Held A process that is field cannot resume execution until all
the processes in its group are at the process barrier
point, or until you manually release it. The various “"Go”
and "Single-step” commands from the Go/Halt/Stop/
Next/Hold menu have no effect on held process.

TotalView User’s Guide Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

Stopped When all processes in the group reach a process barrier
point, TotalView automatically releases them. They re-
main stopped at the barrier point until you take action
on them.

You can manually release held processes with the Hold/Release Process or
Release Group command from the Go/Halt/Step/Next/Hold menu. When
you manually release a process, the "Go” and "Single-step” commands be-
come available again.

You can reuse the Hold/Release Process command to again toggle the hold
state of the process. See “Holding and Releasing Processes” on page 123 for
more information.

Setting a Process Barrier Breakpoint

You can set a process barrier breakpoint with the mouse or from the Action
Point Options dialog box. To set a process barrier breakpoint with the
mouse, move the mouse to the line number in the Process Window where
you want to set the process barrier point. Then press Shift-Select.

To set a process barrier breakpoint from the Action Point Options dialog
box, dive on the line where you want to set the process barrier point. In the
Action Point Options dialog box, click on the BARR icon, then click on OK.
See Figure 100.

If the Stop All Related Processes when Barrier Breakpoint Hit checkbox is
selected, TotalView will stop related process when the barrier is encoun-
tered. The Share Action Point in All Related Procecess checkbox is auto-
matically selected because process barrier breakpoints must be shared.

When you set a process barrier point, TotalView places it in all the processes
contained within the share group.

If you run one of the processes in a group and it hits the process barrier
point, you will see an H next to the process name in the Root Window and
the word [Held] in the process title bar in the main Process Window. Process
barrier points are always shared. See Figure 101.

Version 4.1 TotalView User's Guide 207

Setting Action Points
“ Setting Breakpoints and Barriers

Breakpoint
B Stop ALl Related Processes when Breakpoint Hit

B Process Barrier Breakpoint
B Stop All Related Processes when Barrier Breakpoint Hit

Ewaluate Expression

Log Gist Event Event. Mame:
Yariable to Track:
Format Strings

B Action Point Enabled
Bq Share Action Point in All Related Processes

E 0K] E Clear] E Abort] EDelete]

Action Point 93 line 150 in snore+0x110 file “fork_loop,cuxx”

Figure 100: Action Point Options Dialog Box

Releasing Processes from Process Barrier Points

TotalView automatically releases processes from a process barrier point
when a process hits that process barrier point and all other processes in the
group are already held at it.

You can create a new process barrier point if every process in the group is al-
ready stopped at the location of the new barrier. Normally, when you create
a new process barrier point TotalView holds any process stopped at the bar-
rier’s location. However, rather than holding all the processes in this case,
TotalView does not hold any of them.

Deleting a Process Barrier Point

You can delete a process barrier point from the Action Point Options dialog
box or from the Process Window. If you had created the process barrier point

208 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

T (1]

Process 19264: fork_loop [Held] |§;ﬁ§
(IR0 Thread 19364,1; fork_loop T |)]

|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Stack Trace INNOOOODCRRRRRRRRRRCR { OORORNCRRRRRRMARRRRRORNOONOAND Stack. Prame NNDDDDDDCRRRRRRRRRRRRRLONOROON

[C++] wait_a_while,

[Function "wait_a_uhil

shore,

FP:
FP=11fffefc) timeout:

+] forker,
main,

__start,

FP=11FFF000
FP=11FFFFO40
FP=11FF$£1b0

v

Local wariablesy
countdown {T0}3
result (50%:

Ox1FFFeffa (G3EEEEROA}
Cax00000001 {13

i
0x11FFFeFF8 =» (0007312000]

Registers for the frame:

Y03 0x3FFo00Bebf0 (4396373352658)
To: Ox11FFfeffd (4831834104

&

AT Function wait_a_whiledtimeval®) in fork_loop.coo: NN

while {countdown—-}
zhared_countup ++3

2]

talView 31.8.0 S NS NEEANE

H fark_loop (B threads)

in wait_a_while(timevalty
in msg_receive_trap

in hstRestoreReqisters
in thdBase

in thdBase

in thdBase
fork_loop,1 (€ threads?
fork_loop,1.1 4B threads)
fork_loop.2 (6 threads) T3

else NS Y Alpha T
110 1 - 19384 10
int result: _
timeout,tv_sec = sleep_time; zgﬁ_é%}
timeout,tv_usec = sleep_time_uzect mgrl-31 T
YIELD¢): mgﬂ';%}
- + mgtL—,
errno = 03) > 19607 E10
result = select €0, 0, 0, 0, &timeouty? > 19504 10
if {result |l errno? 13503 110
printf {"thread ¥ld: select{)=¥d. errno=idsn".
longépthread_self (3}, inti{result), intlerrnoil:
: 0
1 /% wait_a_while */

126

125 | static int snore_entry = 13

Threads (6}

fAction Points

mgr[-11 T

mgr[-31 T in thdBaze
mgr[-41 T in thdBasze

mzg_teceive_trap
mgr[-21 T in hstRestoreRegizters

line 300 in main+(x274
line 303 in main+0x288
line 303 in main+0x28c
line 303 in main+(x290
line 304 in main+0x2393

[N INY __e

@ Action point ID
@ Hold symbol

Figure 101:

Process Barrier Breakpoint in Process and Root Windows

using default settings, selecting the BARR icon in the Source Code Pane of
the Process Window deletes it. In contrast, if some options were set to non-
default values when you select a barrier point, TotalView just disables it. You
can re~enable the barrier using its previously set options by reselecting it.

To delete a process barrier point or other action point having non-default
options, dive on the action point symbol in the Source Code Pane of the
Process Window to display the Action Point Options dialog box. In the dia-
log box, click Delete.

TotalVie

w User’s Guide

209

Setting Action Points
“ Setting Breakpoints and Barriers

Changes when Setting and Clearing a Barrier Point

Setting a process barrier point at the current PC for a stopped process holds
the process there. If, however, all other processes in its group are at the
same PC, TotalView does not hold them. Instead, TotalView treats the pro-
cesses as if they were stopped at an ordinary breakpoint.

All processes that are held and which have threads at the process barrier
point are released when you clear the barrier point. They remain stopped,
but are no longer held. You can clear the barrier breakpoint in the Action

Point Options dialog box by clicking on Clear at the bottom of the Action
Points Window.

Toggling Between a Breakpoint and a Process Barrier Point

You can convert an ordinary breakpoint to a process barrier point by moving
the cursor to the breakpoint and clicking Shift-Select. To convert a process
barrier point back to an ordinary breakpoint, move the cursor to the process
barrier breakpoint and use Shift-Select.

Selecting a barrier point clear it in the same way that it clears breakpoints.

Note that entering Shift-Select on an Eval point does not convert it to a pro-
cess barrier point.

Displaying the Action Points Window

The Action Points Window displays a summary of the action points that are
set in your program. To display this window, display the STOP/BARR/EVAL/
ELOG menu and select the Open Action Points Window command. The Ac-
tion Points Window appears, as shown in Figure 102.

Action Points in fork_loop {03
line 247 in forker+0x170 file "fork_loop,cxx" ﬁ
line 135 in snoret(xE0 file "fork_loop,cuxx”
line 144 in shore+(xal file "Fork_loop,cux”
line 150 in snore+(x110 file "fork_loop,cox"
line 151 in snore+(x124 file "fork_loop,cxx"
2]

Figure 102: Action Points Window

210 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Setting Breakpoints and Barriers

NOTE The list of action points displayed in the Action Points Window is the same as
shown in the Action Points Pane in the Process Window. Also, another way of getting
this window is to dive on a breakpoint.

The columns in this window show:

B The type of action point

B The action point ID

m The line number

B The routine name

® The source file

Action points make it easier to navigate within your source files. You can de-
fine disabled breakpoints in your code and dive into the breakpoint to
quickly display the corresponding source code in the Process Window. Thus,
breakpoints can act like bookmarks in your program.

Displaying and Controlling Action Points

The Action Point Options dialog box lets you set and control an action
point. To display this dialog box, dive into the tag field beside a source line
or an instruction. TotalView displays the dialog box shown in Figure 103 on
page 212.

The following sections explain how you can control action points using the
Process Window, the Action Point Options dialog box, and the Action Points
Window.

Disabling: TotalView can keep an action point’s definition but ignore it
during execution. Disabling an action point does not remove it. TotalView
remembers that an action point exists for the line, but ignores it as long as it
is disabled.

You can disable an action point by:

m Deselecting Action Point Enabled in the Action Point Options dialog.
m Selecting the STOP or BARR sign in the Action Points Window.

TotalView User's Guide

211

Setting Action Points
“ Setting Breakpoints and Barriers

Breakpoint
Bd Stop A1l Related Processes when Breakpoint Hit

rocess Barrier Breakpoint
Stop All Related Proceszes when Barrier Breakpoint Hit

valuate Expression

m = &

og Gist Event Event Mame:
Yariable to Track:
Format String:

[Action Point Enabled
Bd Share Action Point in A1l Related Processes

E 0K] E Clear] E Abort] EDelete]

fction Point 1: line 135 in snore+0xB0 file "fork_loop,coxx”

Figure 103: Action Point Options Dialog Box

Deleting: You can permanently remove an action point by selecting the
STOP or BARR sign in the tag field or selecting the Delete button in the
Action Point Options dialog.

To clear all breakpoints, and process barrier points, go to the Process Win-
dow or Action Points Window, display the STOP/BARR/EVAL/ELOG menu,
and select the Clear All STOP, BARR, & EVAL command.

Enabling: You canactivate an action point that was previously disabled
by selecting the dimmed STOP, BARR, or EVAL sign in the process or Action
Points Window, or selecting Action Point Enabled in the Action Point
Options dialog.

Suppressing: You can tell TotalView to ignore action points during ex-
ecution and prevent the creation of additional action points by selecting the
Suppress All Action Points command on the STOP/BARR/EVAL/ELOG.

212 TotalView User’s Guide Version 4.1

Setting Action Points

Defining Evaluation Points

When you suppress action points, you disable them. In addition, you cannot
update any existing action points or create new ones.

Unsuppressing: You can make previously suppressed action points
active and allow the creation of new ones by selecting the Unsuppress All
Action Points command on the STOP/BARR/ EVAL/ELOG menu.

Defining Evaluation Points

NOTE Assembler support is currently available on the Compag Tru64 UNIX, IBM AlX,
and SGI IRIX operating systems. Compiled expressions must be enabled to use assem-
bler constructs.

TotalView lets you define evaluation points, which are points in your program
where it evaluates a code fragment. A fragment can include special com-
mands to stop a process and its relatives. Evaluation points are often used
to set conditional breakpoints. You can also use evaluation points to test po-
tential fixes for your program.

You can define an evaluation point at any source line that generates execut-
able code (marked with boxed line number in the tag field). If you display as-
sembler or source interleaved with assembler in the Process Window, you
can also define evaluation points on machine-level instructions.

As part of defining an evaluation point, you provide the code fragment to be
evaluated. You can write the code fragment in C, Fortran, or assembler.

At each evaluation point, the code fragment in the evaluation point is exe-
cuted before the code on that line. Typically, the program then executes the
program instruction at which the evaluation point is set. But your code frag-
ment can modify this behavior:

B [t can include a branching instruction (such as GOTO in C or Fortran). The
instruction can transfer control to a different point in the target program,
enabling you to test program patches.

B [t can contain a built-in statement. These special TotalView statements,
which are called instrinsics, define breakpoints, process barrier points, and
countdown breakpoints within the code fragment. By including them

Version 4.1 TotalView User's Guide 213

Setting Action Points
“ Defining Evaluation Points

within other statements that you code, you can define conditional break-
points. For more information on these statements, refer to Table 31
“Built-In Statements Used in Expressions” on page 237.
TotalView evaluates code fragments in the context of the target program.
This means that you can refer to program variables and pass control to
points in the target program.

For complete information on what you can include in code fragments, refer
to "Writing Code Fragments” on page 235.

Evaluation points only modify the processes being debugged—they do not
modify the source program or create a permanent patch in the executable. If
you save a program'’s evaluation points, however, TotalView reapplies them
whenever you start a debugging session for that program. To save your eval-
uation points, refer to “Saving Action Points in a File” on page 232.

NOTE You should stop a process before setting an evaluation point. This ensures
that the evaluation point is set in a stable context in the program.

Setting Evaluation Points

To set an evaluation point:

1 Dive into the tag field for an instruction in the Process Window. The
debugger displays the Action Point Options dialog box.

2 Select the EVAL (Evaluate Expression) button.

3 Select the button (if it’s not already selected) for the language in
which you will code the fragment.

4 Select the evaluation text box and enter the code fragment to be eval-
uated. Use the field editor commands as required. For information on
supported C, Fortran, and assembler language constructs, refer to
“Writing Code Fragments” on page 235.

5 For multiprocess programs, decide whether to share the evaluation
point among all processes in the program’s share group. By default,
the Share Action Point in All Related Processes checkbox is selected
for multiprocess programs, but you can override this by deselecting it.

6 Select the OK button to confirm your changes. If the code fragment
has an error, TotalView displays an error message. Otherwise, it pro-

214 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Defining Evaluation Points

cesses the code, closes the dialog box, and places an EVAL icon in the
tag field.

Setting Conditional Breakpoints

Here are some examples of conditional breakpoints and the code fragments
that you would need to supply in step 4:

B To define a breakpoint that is reached whenever a variable i is greater
than 20 but less than 25:

if i >20 &8 i < 25)
$stop;
m To define a breakpoint that is reached every 10th time the $count state-
ment is executed:
$count 10
B To define a breakpoint with a more complex expression, consider:
$count i * 2

When the variable i equals 4, the process stops the 8th time it executes
the $count statement. After the process stops, the expression is reeval-
uated. If i now equals 5, the next stop occurs after the process executes
the $count statement 10 more times.
For complete descriptions of the $stop and $count statements, refer to
“Built-In Statements” on page 237.

Patching Programs

You can use expressions in evaluation points to patch your code if you use
the goto (C) and GOTO (Fortran) statements to jump to another point in
your program’s execution. This lets you:

B Move around code that you do not want your program to execute.
B Add new pieces of code.

In many cases, correcting an error means that you will do both operation:
you patch out incorrect lines and patch in corrections.

Conditionally Patching Out Code

For example, suppose a section of your C program dereferences a null
pointer:

TotalView User's Guide

215

Setting Action Points
“ Defining Evaluation Points

1 int check for_error (int *error_ptr)
2 {

3 *error_ptr = global_error;

4 global_error = O;

] return (global_error != 0J;

6 }

This routine calling this function assumes that the value of error_ptr can be
0. However, check_for_error() assumes that error_ptr is not null. Conse-
quently, line 3 can dereference a null pointer.

You can correct this error by setting an evaluation point on line 3 and enter-
ing:
if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 is not executed.

Patching In a Function Call

As an alternative, you can patch in a printf() statement that displays the
value of global_error. You would set an evaluation point on line 4 and enter:

printf ("global_error is %d\n", global_error];

This code fragment is executed before the code on line 4; that is, it is exe-
cuted before global_error is set to 0.
Correcting Code

The next example contains a coding error: the function returns the maxi-
mum value instead of the minimum value:

1 int minimum (int a, int b)
2 |
3 int result; /¥ Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }
You can correct this error by adding the following code at line 4's evaluation

point:

216 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Defining Evaluation Points
if (@ < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the statement en-
tered at the evaluation point.

Interpreted Versus Compiled Expressions

On most platforms, TotalView executes interpreted expressions. TotalView
can also execute compiled expressions on the Compaq Tru64 UNIX, IBM
AIX, and SGIIRIX platforms. On Compaq Tru64 UNIX and IBM AIX platforms,
compiled expressions are enabled by default.

You can enable or disable compiled expressions using X resources or com-
mand-line options. Refer to "TOTALVIEW* COMPILEEXPRESSIONS” on page 279.
See Appendix B "Operating Systems” on page 329 to find out how TotalView
handles expressions on specific platforms.

NOTE Using anyone of the following intrinsics means that the evaluation point is
interpreted instead of compiled: $visualize, $nid, $clid, $processduid, $duid, $tid,
and $systid. In addition, $pid forces interpretation on AlX.

Interpreted Expressions

TotalView sets a breakpoint in your code and executes the evaluation point.
Since TotalView is executing the expression, interpreted expressions run
slower (and possibly much slower) than compiled expressions. With multi-
process programs, interpreted expressions run more slowly because pro-
cesses can be waiting for TotalView to execute the expression.

When you are debugging remote programs, interpreted expressions always
run more slowly because TotalView on the host, not the TotalView debugger
server (tvdsvr) on the client, executes the expression. For example, an inter-
preted expression could require that 100 remote processes wait for the To-
talView debugger process on the host machine to evaluate the interpreted
expression. In contrast, if the expression is compiled, it is evaluated on each
remote process.

If the expression contains $stop or $count, TotalView stops evaluating the
expression and stops the process. Thus, if you use $stop or $count, place

TotalView User's Guide

217

Setting Action Points
“ Defining Evaluation Points

them at the end of your expression because TotalView stops evaluating the
expression at that point.

Compiled expressions

TotalView compiles, links, and patches expressions into the target process.
by replacing an instruction with a “branch out” instruction, relocating the
original instruction, and appending the expression. This code is then exe-
cuted by the target thread; this allows evaluation points and conditional
breakpoints to execute very quickly. And, more importantly, this code does
not need to communicate with the TotalView host process until it needs to.

If the expression contains $stop or $count, TotalView stops executing the
compiled expression, so you can single step through it and continue execut-
ing the expression as you would the rest of your code. See Figure 104.

[Process 58307 fork_loop P et at]
W Theead 5830,17 fark_loop [T T T T T T
NI Stack Trace MMMMMIRITON (00RO Stack. Frame IINMIRTTTTT0000N
[C |cualso, FP= B Function "sual$2's [
main, FP=L1FFFF04(] Ho paramsters,

_start, FR=11fFF 160

Registers for the frame!

Wiz 000000001 (13
TO3 Ox11FFFFO40 <4831B34176)
Tl: Oxllfffeeb $4831833776)
T2: 0x00000001 {13
T3: 000000001 (1)

=

IR Funct ion_eval$2 in eval$2 NI

1| if tthreads_per_copy == 13]
= $stop:

Threads {33

in eual$?

mgr[-11 T in nsg_receive_trap
mgr(-21 T in thdBase

Action Points

line 303 in main+0x288
ling 303 in main+0x28c
line 202 in main+0x290
line 307 in main+0x29c
line 135 in snore+0xB0

<AET T2 <

Figure 104: Stopped Execution of Compiled Expressions

If you plan to use compiled expressions, you may need to think about allo-

cating patch space. See ‘Allocating Patch Space for Compiled Expressions” on
page 220.

218 TotalView User’s Guide Version 4.1

Setting Action Points

Defining Evaluation Points

Interpreted Versus Compiled Expression Performance

The greatest benefit of compiled expressions over interpreted expressions
comes when either of the following two items are true.

m The expression contains compute intensive constructs such as
loops
Compiled machine code runs faster than interpreted expressions.

® The number of processes and threads being debugged increases
For interpreted expressions, interpreting an expression in the debugger
can become a bottleneck because the expression is interpreted serially
on the host. In contrast, a compiled expression is executed remotely on
each node without involvement by the host. And, of course, interpreted
expressions execute much slower than compiled expressions and, be-
cause the interpreted expression is single-threaded through the host,
your program will experience network latency delays in addition to wait-
ing for the host to process the request.

The following table shows the performance of interpreted and compiled ex-

pressions on Compaq Tru64 UNIX, IBM AIX, and SGI IRIX platforms. A sin-

gle-threaded test program used a simple loop with 15,000 iterations. An

evaluation point containing a function call was placed inside the loop. The

numbers shown show the mean and median intervals between consecutive

occurrences of the evaluation point.

Table 27: Performance of Interpreted and Compiled Expressions

Interpreted (seconds) Compiled (seconds)
Platform Median Mean Median Mean
Alpha 0.057617 0.0787336 0.0 0.00000664
AIX 0.012652 0.0127334 0.004587 0.00470586
[RIX 0.011715 0.0209809 0.004347 0.00430252

All times represent the number of seconds needed to execute one evalua-
tion point. Also, median time to execute the compiled expression on the Al-
pha was less than one clock tick.

Version 4.1 TotalView User's Guide 219

Setting Action Points
“ Defining Evaluation Points

Allocating Patch Space for Compiled Expressions

TotalView must allocate or find space in your program to hold the code frag-
ments generated by compiled expressions. Since this patch space is part of
your program'’s address space, the location, size, and allocation scheme
used by TotalView may conflict with your program. As a result, you may need
to change how TotalView allocates this space. You can choose one of the
following patch space allocation schemes:

m Dynamic patch space allocation

Tells TotalView to find the space for the code fragment dynamically.
m Static patch space allocation

Tells TotalView to use a statically allocated area of memory.

Dynamic Patch Space Allocation

Dynamic patch space allocation means that TotalView allocates patch space for
the code fragments dynamically. If you do not specify the size and location
for the patch space, TotalView allocates 1 MB at a default location. The de-
bugger attempts to map memory in your address space by forcing a call to
the mmap() system call. Because this function call may not succeed, dy-
namic patch space allocation may not work reliably.

TotalView allocates memory for read, write, and execute access within the
following addressees:

Table 28: Dynamic Patch Space Allocation Default Addresses

Platform Address range

Compaq Tru64 UNIX OxFFFFFOO0O0O - OxFFFFFFFFFF
IBM AIX OxCFFOO00OO - OxCFFFFFFF
SGIIRIX (—n32) Ox4FF0O0000 - Ox4FFFFFFF
SGIRIX (-64) Ox8FFO0000 - Ox8FFFFFFF

NOTE You can only allocate dynamic patch space for these three machines.

If the default address range conflicts with your program, or you would like to
change the size of the dynamically allocated patch space, do the following:

220 TotalView User’s Guide Version 4.1

Setting Action Points

Defining Evaluation Points

B Specify the dynamically allocated patch space base address using the X
resource “TOTALVIEW* PATCHAREAADDRESS” on page 287, or command line
option "—patch_area_base”.

B Specify the dynamically allocated patch space length using the X
resource "TOTALVIEW* PATCHAREALENGTH” on page 287, or command line
option "—patch_area_length”.

Static Patch Space Allocation

TotalView can statically allocate the patch in your program by compiling in
an array with a special name. You can then specify the size of the patch
space—the default size is 1 MB. TotalView looks up this special array name
and uses its space as the patch space. This scheme is more reliable because
TotalView will not force your program to make a function call.

To include a 1 MB statically allocated patch space in your program, add the
TVDB_patch_base_address data object in a C module. Because this object
must be 8-byte aligned, declare it as an array of doubles. For example:
/¥ 1 megabyte == size TV expects */
#define PATCH_LEN Ox100000
double TVDB_patch_base _address
[PATCH_LEN / sizeof(doublel]
If you need to use a static patch space size that differs from the default 1
MB, you must create it in assembler language. The assembler defines two
tags that TotalView uses to determine the start and end of the patch space.
Since some C compilers reorder user data, you cannot reliably write this in
C. Table 29 shows sample assembler code for each platform.

Table 29: Static Patch Space Assembler Code

Platform Assembler Code
Compaq Tru64 UNIX .data
.align 3

.globl TVDB_patch_base address

.globl TVDB_patch_end_address
TVDB_patch_base_address:

.byte Ox00 : PATCH SIZE
TVDB_patch_end _address:

Version 4.1 TotalView User's Guide 221

Setting Action Points
“ Defining Evaluation Points

Table 29: Static Patch Space Assembler Code (cont.)

Platform Assembler Code

IBM AIX .csect .data{RW}, 3
.globl TVDB_patch_base address
.globl TVDB patch_end address
TVDB_patch _base address:
.space FATCH SIZE
TVDB_patch_end _address:

SGI IRIX .data
.align 3
.globl TVDB patch _base address
.globl TVDB patch _end address
TVDB_patch _base address:
.space FATCH SIZE
TVDB_patch_end address:

Here’s how you would use the static patch space assembler code:

1 Use an ASCII editor and place the assembler code into a file named
tvdb_patch_space:s.

2 Replace the tag PATCH_SPACE with the decimal number of bytes you
want. This value must be a multiple of 8.

3 Assemble the file into an object file using a command such as:
cc -c tvdb_patch space.s
On SGI IRIX, also pass —n32 or —64 to create the correct object file type.
4 Link the resulting tvdb_patch_space.o into your program.

Controlling Evaluation Points

The procedures for controlling evaluation points are identical to the proce-
dures for controlling breakpoints and process barrier points. For more infor-
mation, see:

m “Displaying the Action Points Window” on page 210
m "Displaying and Controlling Action Points” on page 211

222 TotalView User’s Guide Version 4.1

Setting Action Points

Using Watchpoints

Using Watchpoints

" " m = EEE@EEEEEEEEEEEEEEEEEEEESEEEEEEEEE®E@®®
TotalView lets you monitor the changes that occur to memory locations by
creating a special kind of action point called a Data Watchpoint, or just Watch-
point for short. Watchpoints are most often used to find a statement in your
program that is writing to a "stray” memory location. This can occur, for ex-
ample, when memory is shared and another process or thread is writing to
the same location, when writing off the end of an array, or when your pro-
gram has a dangling pointer.

TotalView watchpoints are called “modify watchpoints” because TotalView
only triggers a watchpoint when your program modifies a memory location. If
a program writes a value into a location that is the same as what is already
stored, TotalView does not trigger the watchpoint because its value did not
change.

For example, if location 0x10000 has a value of zero and your program
writes a zero into this location, TotalView does not trigger the watchpoint
even though your program wrote data into the memory location. See "Trig-
gering Watchpoints” on page 229 for more details on when watchpoints trigger.

TotalView also lets you create conditional watchpoints. A conditional watch-
point is similar to an evaluation point in that TotalView will evaluate an ex-
pression when the watchpoint triggers. You can use conditional watchpoints
for a number of purposes. For example, you can use it to test if a value
changes its sign—that is, it becomes positive or negative—or if a value
moves above or below some threshold value.

Architectures

The number of watchpoints, their size, and alignment restrictions differs
from platform to platform. (This is because TotalView relies on the operating
system and its hardware to implement data watchpoints.)

NOTE Watchpoints are not available on Alpha Linux and HP.

The following list describes constraints that are unique to each platform:

Version 4.1 TotalView User's Guide 223

Setting Action Points
“ Using Watchpoints

Compaq Tru64 Watchpoints are implemented on Compaq Tru64 sys-
tems using a page protection scheme. Tru64 places no
limitations on the number of watchpoints that you can
create and there are no alignment or size constraints.
However, watchpoints cannot overlap and you cannot
create a watchpoint on an already write-protected
page.

Because the page size is 8,192 bytes, using watch-
points can degrade performance if your program fre-
quently writes to protected pages.

IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX
4.3R) or later systems. (AIX 4.3R is available as APAR
IY06844.) This watchpoint cannot be longer than 8-
bytes and it must be aligned within an 8-byte bound-
ary.

IRIX6 MIPS Watchpoints are implemented on IRIX 6.2 and later
operating systems. These systems allow you to create
about 100 watchpoints. There are no alignment or size
constraints. However, watchpoints cannot overlap.

Linux x86 You can create up to four watchpoints and each must
be 1-, 2-, or 4-bytes in length and a memory address
must be aligned for the byte length. That is, a 4-byte
watchpoint must be aligned on a 4-byte address
boundary, and a 2-byte watchpoint must be aligned on
a 2-byte boundary, etc.

Solaris SPARC/x86
Watchpoints are implemented on Solaris 2.6 or later
operating systems. These operating system allow you
to create hundreds of watchpoints and there are no
alignment or size constraints. However, watchpoints
cannot overlap.

Typically, a debugging session does not use many watchpoints. In most
cases, only one memory location at a time is being monitored. So, restric-
tions on the number of values you can watch are seldom an issue.

224 TotalView User’s Guide Version 4.1

Setting Action Points

Using Watchpoints

Creating Watchpoints

Creating a watchpoint is a three-step process. The first step is to dive on a
variable to display its Variable Window. With the cursor in the Variable Win-
dow, display the Variable popup menu, and select the Watchpoint on
Variable... menu item. (If your platform does not support data watchpoints,
this menu item is dimmed.)

Clase All Similar Windows]
Update Process Info u

Duplicate Window

Watchpoint on Yariable,.. W

ST
Sort Azcending
Sort Descending

Search for String,..

Search Backward for String...
Reexecute Last Search

Save Window to File,,.
Reexecute Last Save Window

o

tolp .

Figure 105: The Variable Menu

As an alternative, you could have typed "w” while the cursor is in the Vari-
able Window.

NOTE Be careful that your cursor is focused on the Variable Window. If it is focused
on the Process Window, typing “w" holds the process. If this occurs, you will need to
manually release the process by typing “w" a second time.

After selecting the Watchpoint on Variable command. TotalView displays
the dialog box shown in Figure 106.

The fields and controls in this window are as follows:

Memory Address The first (or lowest) memory address to watch.
Depending on the platform, this address may need to
be aligned to a multiple of the Byte Size field. For more
information, see “Architectures” on page 223. If you edit
the address of an existing watchpoint, TotalView alters

Version 4.1 TotalView User's Guide 225

Setting Action Points
“ Using Watchpoints

Memory Address: Pxffffffacal
Byte Size:

MM Unconditional Data Watchpoint
Bd Stop ALl Related Processes when Watchpoint Hit

Conditional Data Watchpoint

Type for $oldval/$newvals [::::::::::::::::::]

B Action Point Enabled
Bd Share Action Point in All Related Processes

E 0K] E Clear] E Abort] E Delete]

Hew Action Point

Figure 106: Watchpoint Options Dialog Box

the watchpoint so it will watch this new memory loca-
tion and reassigns the watchpoint’s action point ID.

Byte Size The number of bytes being watched. Changing this
value changes the number of bytes that will be
watched. Your operating system may place constraints
on the byte size. For more information, see “Architec-
tures” on page 223.

UDWP Unconditional Data Watchpoint. If this button is
selected, TotalView will stop your program when the
watchpoint triggers.

Stop All Related Processes when Watchpoint Hit
If selected, TotalView stops all members of the pro-
gram group when the watchpoint triggers. Otherwise,
only the process that reaches the watchpoint stops.

226 TotalView User’s Guide Version 4.1

Setting Action Points

Using Watchpoints

cbwp Conditional Data Watchpoint. If this button is selected,
TotalView evaluates the expression when the watch-
point triggers.

Type for $oldval/$newval
This field lets you specify the data type of the $oldval
and $newval built-in variables when you use them in a
conditional watchpoint expression. This must be a
scalar type, such as int, integer, float, real, or char.
Aggregate types such as arrays and structures are not
allowed.

If the size of the watched location matches the size of
the data type entered here, the $oldval and $newval
information is interpreted as the variable’s type. If you
watch an entire array, the watched location can be
larger than the size of this type. For more information,
see “Conditional Walchpoints” on page 230.

(Evaluation area) Enter the expression that TotalView will execute when
the watchpoint triggers. The statements are written in
the C or Fortran programming languages (as indicated
by the C and 77 buttons). For more information, see
“Conditional Watchpoints” on page 230.

Action Point Enabled
If selected, indicates that the watchpoint is enabled.
You can also toggle the enabled/disabled state by
selecting the watchpoint in the Action Points List
Pane.

Share Action Point in All Related Processes
If selected, enables and disables the watchpoint in all
members of the share group. If this button is not
selected, you must enable and disable the watchpoint
in each share group member individually.

The controls at the bottom have their standard meanings:

OK Accepts all changes.

Clear Clears all fields and deselects all buttons.

Abort Cancels this dialog box without making changes.
Delete Deletes this watchpoint.

Version 4.1 TotalView User's Guide 227

Setting Action Points
“ Using Watchpoints

Displaying Watchpoints using the Action Points Window

The Action Points Window displays a summary of the action points that are
set in your program. To display this window, invoke the STOP/BARR/EVAL/
ELOG menu and select the Open Action Points Window command. The Ac-
tion Points Window appears, as shown in Figure 107

| Action Points in arrays (77299

1 line 29 at check_fortran_arrays_+Oxdd file "arrays.F" [N
B 3 line 53 at check_fortran_arrays_+0x25:c file "arrays,F"
MMME 4 400 bytes @ OxFFFFFFacal

4l

Figure 107: Action Points Window

The watchpoint entry, indicated by UDWP for Unconditional Data Watch-
point and CDWP for Conditional Data Watchpoint, displays the action point
ID, the amount of memory being watched, and the location being watched.

If you dive into a watchpoint, TotalView displays the Watchpoint Options
dialog box.

If you select a watchpoint, TotalView will toggle the enabled/disabled state
of the watchpoint.

The list of action points displayed in the Action Points Window is the same
as shown in the Action Points Pane in the Process Window. Diving into a
watchpoint in this window also displays the Watchpoint Options dialog
box.

Watching Memory

A watchpoint tracks a memory location: it does not track a variable. This
means that a watchpoint may not perform as you would expect it to when
watching stack or automatic variables. For example, assume that you create
a watchpoint to watch a variable in a subroutine. When control exits from
the subroutine, the memory allocated on the stack for this subroutine is
deallocated. At this time, TotalView is watching unallocated stack memory.

228 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Using Watchpoints

And, when the stack memory is reallocated to a new stack frame, the watch-
point will be triggered when that memory is modified.

Also, if a subroutine is reinvoked, it often executes using a different part of
the stack. So, if the subroutine changes a variable within the subroutine,
this change may not be seen because the variable is at a different memory
location.

All of this means that in most circumstances, you can not place a watch-
point on a stack variable. If you need to watch a stack variable, you will need
to create and delete the watchpoint each time your program invokes the
subroutine.

NOTE Insome circumstances, a subroutine is always called from the same location.
This means that its local variables will probably be in the same location, so it may be
worth trying.

If you place a watchpoint on a variable that is always invoked by reference
(that is, the value of a variable is always accessed using a pointer to the vari-
able), you can set a watchpoint on it because the memory locations used by
the variable are not changing.

Triggering Watchpoints

" " E = EEEEEEEEEEEEESEEEE®EEEEE®EE®E@®EG®
The Program Counter after a Watchpoint Triggers
When a watchpoint triggers, the thread’s program counter points to the in-
struction following the instruction that caused the watchpoint to trigger. If
the memory store instruction is the last instruction in a source statement,
the program counter will be pointing to the source line following the state-
ment that triggered the watchpoint. (Breakpoints and watchpoints work dif-
ferently. A breakpoint stops before an instruction executes. In contrast, a
watchpoint stops dafter an instruction executes.)

Multiple Watchpoints

If a program modifies more than one byte with one instruction (which is nor-
mally the case when storinga word), the watchpoint with the lowest memory
location in the modified region is triggered. Although the program may be

TotalView User's Guide 229

Setting Action Points
“ Using Watchpoints

modifying locations monitored by other watchpoints, only the watchpoint
for the lowest memory location is triggered. This situation occurs when your
watchpoints are monitoring adjacent memory locations and a single store
instruction modifies these adjacent locations.

For example, assume that you have two 1-byte watchpoints, one on loca-
tion 0x10000 and the other on location 0x10001. Also assume that your
program uses a single instruction to store a 2-byte value at locations
0x10000 and 0x10001. If the 2-byte storage operation modifies both bytes,
the watchpoint for location 0x10000 triggers. The watchpoint for location
0x10001 does not and will not trigger at this time.

Here's a second example. Assume that you have a 4-byte integer that uses
storage locations 0x10000 through 0x10003 and you set a watchpoint on
this integer. If a process modifies location 0x10002, TotalView triggers the
watchpoint. Now assume that you are watching two adjacent 4-byte inte-
gers that are stored in locations 0x10000 through 0x10007. If a process
writes to locations 0x10003 and 0x10004 (that is, one byte within each), To-
talView triggers the watchpoint associated with location 0x10003. The
watchpoint associated with location 0x10004 does not trigger.

Data Copies

TotalView keeps an internal copy of data in the watched memory locations
for each process sharing the watchpoint. Consequently, if you create watch-
points that cover a large area of memory or if your program has a large num-
ber or processes, you will increase TotalView's virtual memory requirements.
Further, TotalView refetches data for each memory location whenever the
process or thread is continued. This can affect TotalView's performance.

Conditional Watchpoints

If you associate an expression with a watchpoint (by selecting the CDWP
button in the Watchpoint Options dialog box and typing in an expression),
TotalView will evaluate the expression after the watchpoint triggers. The pro-
gramming statements that you can use in this area are identical to those

230 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Using Watchpoints

that you can use when creating an evaluation point, except that you are not
allowed to call functions from a watchpoint expression.

The variables used in watchpoint expressions must be global. This is be-
cause the watchpoint can be triggered from any procedure or scope within
your program.

Because memory locations are not scoped, the variable used in your expres-
sion must be globally accessible.

NOTE Fortran does not have global variables. Consequently, you cannot directly
refer to your program’s variables.

TotalView has two intrinsic variables that are used with conditional watch-~
point expressions. These variables are:

$oldval The value of the memory locations before a change is
made.

$newval The value of the memory locations after a change is
made.

Here is an expression that uses these values:

if (iValue !'= 42 && iValue = 44) {
iNewValue = $newval; iOldValue = $oldval; $stop;}

When the value iValue global variable is neither 42 nor 44, TotalView will
store the new and old memory values in the iNewValue and iOldValue vari-
ables. These variables are defined in the program. (Storing the old and new
values is a convenient way of letting you monitor the changes made by your
program.)

Here is a condition that triggers a watchpoint when a memory location’s
value becomes negative:

if ($oldval >= 0 && $newval < 0) $stop

And here’s a condition that triggers a watchpoint when the sign of the value
in the memory location changes:

if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval
field in the Watchpoint Options dialog box.

TotalView User's Guide

231

Setting Action Points
“ Saving Action Points in a File

For more information on writing expressions, see “Writing Code Fragments” on
page 235.

If a watchpoint has the same length as the $oldval or $newval data type,
the value of these variables is apparent. However, if the data type is shorter
than the length of the watch region, TotalView searches for the first changed
location in the watched region and uses that location for $oldval and
$newval variables. (It aligns data within the watched region based on the
size of their type. For example, if their type is a 4-byte integer and byte 7 in
the watched region changes, TotalView uses bytes 4 through 7 of the watch-
point when it assigns values to these variables.)

For example, suppose you are watching an array of 1000 ints called
must_be_positive and you want to trigger a watchpoint as soon as one ele-
ment becomes negative. You would declare the type for $oldval and
$newval to be int and use the following condition:

if ($newval < 0) $stop;

When your program writes a new value to the array, TotalView triggers the
watchpoint, sets the values of $oldval and $newval, and evaluates the ex-
pression. When $newval is negative, the $stop statement halts the process.

This can be a very powerful technique for range checking all the values writ-
ten into an array. (Because of byte length restrictions, you can only use this
technique on IRIX and Solaris.)

Conditional watchpoints are always interpreted by TotalView; they are never
compiled. And, because interpreted watchpoints are single threaded within
TotalView, every process or thread that writes to the watched location must
wait for other instances of the watchpoint to finish executing. This can ad-

versely affect performance.

Saving Action Points in a File

You can save a program'’s action points into a file. TotalView will then use
this information to reset these points when it is restarted. When you save

232 TotalView User’s Guide Version 4.1

Setting Action Points

Evaluating Expressions

action points, TotalView creates a file named program.TVD.breakpoints,
where program is the name of your program.

NOTE Watchpoints are not saved.

To save action points, display the STOP/BARR/EVAL/ELOG menu and select
the Save All Action Points command from the Process Window. TotalView
places the action points file in the same directory as your program.

If you set "TOTALVIEW* AUTOSAVEBREAKPOINTS” on page 277, TotalView will
automatically save action points to a file. Alternatively, starting TotalView
with the —sb option (see “TotalView Command Syntax” described on
page 299) also tells TotalView to save your breakpoints.

Once you create an action points file, TotalView automatically loads the file
each time you invoke the debugger. TotalView uses the same search paths as
it does to locate source files. If you prefer to suppress this behavior, you can
set an X resource (see "TOTALVIEW* AUTOLOADBREAKPOINTS” on page 277) or
use the —nlb option each time you start TotalView (see “TotalView Command
Syntax” on page 299).

Evaluating Expressions

Version 4.1

TotalView lets you open a window for evaluating expressions in the context
of a particular process and evaluate expressions in C, Fortran, or assembler.

NOTE Not all platforms support the use of assembler constructs; see Appendix C
"Architectures” on page 343 for details.

To evaluate an expression:
1 Make sure that a process is created, running, or stopped in the Pro-
cess Window.

2 Select the Open Expression Window command from the Process Win-
dow. An Expression Window appears.

3 Select the button (if it is not already selected) for the language in
which you will write the code.

TotalView User's Guide

233

Setting Action Points
“ Evaluating Expressions

4 Select the Expression box and enter a code fragment. For a descrip-
tion of the supported language constructs, see “Writing Code Fragments”
on page 235.

The last statement in the code fragment can be a free-standing expres-
sion; you don't have to assign the expression’s return value to a variable.
Figure 108 shows a sample expression.

Expreszion Window for "filter" {0}

Expreszion

Etatic int sum = 0f

int i:

[For (i =0 i <10
UM += i

kumzll

T ALl

Yalue: |

= = &=

Figure 108: Sample Expression Window

5 Select the Eval button. If TotalView finds an error, it places the cursor
on the incorrect line and displays an error message. Otherwise, it
interprets (or on some platforms, compiles and executes) the code,
and displays the value of the last expression in the Value field.

While the code is being executed, you cannot modify anything in the win-
dow. TotalView also displays diagonal lines across the window, indicating
that the window is temporarily inaccessible.

Since code fragments are evaluated in the context of the target process,
stack variables are evaluated according to the currently selected stack
frame. If the fragment reaches a breakpoint (or stops for any other rea-
son), the Expression Window remains suspended. Assignment state-
ments can affect the target process because they can change the value
of a variable in the target process.

234 TotalView User’s Guide Version 4.1

Setting Action Points

Writing Code Fragments

You can use the Expression Window in many different ways, but here are two
examples:

B Expressions can contain loops, so you could use a for loop to search an
array of structures for an entry set to a certain value. In this case, you use
the loop index at which the value is found as the last expression in the
Expression Window.

B Because you can call subroutines from the Expression Window, you can
test and debug a single routine in your program without building a test
program to call the routine.

Once you have selected and edited an expression in the window, you cannot

use a keyboard equivalent (qg) to exit from the window because the field ed-

itor is still active. To exit, display the menu and select the Close Window
command or press Shift-Return.

Writing Code Fragments

Version 4.1

You can use code fragments in evaluation points and in the Expression Win-
dow. This section describes the intrinsic variables, built-in statements, and
language constructs supported by TotalView.

Intrinsic Variables

The TotalView expression system supports built-in variables that allow you
to access special thread and process values. All of the variables are 32-bit
integers, which is an int or a long on most platforms. The variables are not
[values, so you cannot assign to them or take their addresses. Table 30 lists
the intrinsic variable names and their meanings.

Table 30: Intrinsic Variables

Name Meaning
$clid Returns the cluster ID. (Interpreted expressions only.)
$duid Returns the TotalView-assigned Debugger Unique ID

(DUID). (Interpreted expressions only.)

$newval Returns the value just assigned to a watched memory
location. (Watchpoints only)

TotalView User's Guide

235

Setting Action Points
“ Writing Code Fragments

Table 30: Intrinsic Variables (cont.)

Name Meaning

$nid Returns the node ID. (Interpreted expressions only.)

$oldval Returns the value that existed in a watched memory
location before a new value modified it. (Watchpoints
only)

$pid Returns the process ID.

$processduid Returns the DUID of the process. (Interpreted expres-
sions only.)

$systid Returns the system-assigned thread ID. When refer-
enced from a process, generates an error.

$tid Returns the TotalView-assigned thread ID. When refer-

enced from a process, generates an error.

Intrinsic variables allow you to create thread specific breakpoints from the
expression system. For example, the $tid intrinsic variable and the $stop
built-in operation let you create thread specific breakpoint as follows:

if (Btid == 3)

$stop;

This tells TotalView to stop the process only if thread 3 evaluated the ex-
pression. You can also create complex expressions using intrinsic variables.
For example:

if ($pid = 34 && $tid > 7)
printf (“Hello from %od.%d\n”, $pid, $tid);

NOTE Using any of the following intrinsics means that the evaluation point is inter-

preted instead of compiled: $clid, $duid, $nid, $processduid, $systid, $tid, and $visu-
alize. In addition, $pid forces interpretation on AlX.

236 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Built-In Statements

Writing Code Fragments

TotalView provides a set of built-in statements that you can use when writ-
ing code fragments. The statements are available in all languages, and are
shown in the following table.

Table 31: Built-In Statements Used in Expressions

Statement

$count expression
$countprocess expression

$countall expression

$countthread expression

Use

Sets a process-level countdown breakpoint.
When any thread in a process executes this
statement for the number of times specified by
expression, the process stops. The other pro-
cesses in the program group continue to exe-
cute.

Sets a program-group-level countdown break-
point. All processes in the program group stop
when any process in the group executes this
statement for the number of times specified by
expression.

Sets a thread-level countdown breakpoint.
When any thread in a process executes, this
statement the number of times specified by ex-
pression, it stops. Other threads in the process
continue to execute.

If the target system does not support asynchro-
nous stop, this statement is the same as
$countprocess.

A thread evaluates expression when it executes
$count for the first time, and this statement
must evaluate to a positive integer. A thread re-
evaluates $count only when it results in a
breakpoint. After the breakpoint occurs, the
debugger resets the process’ internal counter
for the breakpoint to the value of expression.
The internal counter is stored in the process
and shared by all threads in that process.

TotalView User's Guide

237

Setting Action Points
“ Writing Code Fragments

Table 31: Built-In Statements Used in Expressions (cont.)

Statement Use
$hold Holds the current process. If all other pro-
$holdprocess cesses in the group are already held in break-

point state at this Eval point, then all are re-
leased. If other processes in the group are
running, they continue to run.

$holdstopall Exactly like $hold, except any processes in the

$holdprocessstopall group which are running are stopped. Note that
the other processes in the group are not auto-
matically held by this call—they are just

stopped.

$holdthread Freezes the current thread leaving other
threads running.

$holdthreadstop Exactly like $holdthread except it stops the pro-

$holdthreadstopprocess (ess. The other processes in the group are left
running.

$holdthreadstopall Exactly like $holdthreadstop except it stops
the entire group.

$stop Sets a process-level breakpoint. The process

$stopprocess that executes this statement stops; other pro-
cesses in the program group continue to exe-
cute.

$stopall Sets a program-group-level breakpoint. All pro-

cesses in the program group stop when any
thread or process in the group executes this
statement.

$stopthread Sets a thread-level breakpoint. Although the
thread that executes this statement stops, all
other threads in the process continue to exe-
cute.

If the target system does not support asynchro-
nous stop, this is the same as a $stopprocess.

238 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Writing Code Fragments

Table 31: Built-In Statements Used in Expressions (cont.)

Statement Use

$visualize(expression|,slice]) Visualizes the data specified by expression and
modified by the optional slice value. Expression
and slice must be written using the code frag-
ment’s language. The expression can be any
valid expression that yields a data-set (after
modification by slice) that can be visualized. slice
is a quoted string containing a slice expression.
For more information on how to use Svisualize
in an expression, see “Visualizing Data in Expres-
sions” on page 253.

C Constructs Supported

When writing code fragments in C, keep these guidelines in mind.
m C-style (/* comment */) and C+ +-style (// comment) comments are per-
mitted. For example:
// This code fragment creates a temporary patch
i=i+2;/*Add two toi */
B You can omit semicolons when no ambiguity would result.
m Dollar signs ($) in identifiers are permitted.

Data Types and Declarations

The following list describes the C data types and declarations that you can

use:

B The data types that you can use are char, short, int, float, double, and
pointers to any primitive type or any named type in the target program.

B Only simple declarations are permitted. The struct, union, and array dec-
larations are not permitted.

B References to variables of any type in the target program are permitted.

m Unmodified variable declarations are considered local. References to
them override references to similarly named global variables and other
variables in the target program.

TotalView User's Guide

239

240

Setting Action Points

Writing Code Fragments

(Compiled evaluation points only) The global declaration makes a vari-
able available to other evaluation points and expression windows in the
target process.

(Compiled evaluation points only) The extern declaration references a
global variable that was or will be defined elsewhere. If the global variable
is not yet defined, TotalView displays a warning.

Static variables are local and persist even after an evaluation point is
evaluated.

For static and global variables, expressions that initialize data as part of
the variable declaration are performed only the first time the code frag-
ment is evaluated. Local variables are initialized each time the code frag-
ment is evaluated.

Statements

The following list describes the C language statements that you can use.

The statements that you can use are assignment, break, continue, if/else
structures, for, goto, and while.

You can use the goto statement to define and branch to symbolic labels.
These labels are considered local to the window. As an extension, you can
also refer to a line number in the target program. This line number refers
to the tag field number of the source code line. Here is a goto statement

that branches to source line number 432 of the target program:

goto 432;
Although function calls are permitted, structures cannot be passed.
Type casting is permitted.

All operators are permitted, with these limitations:

TotalView User’s Guide

The ?: conditional operator is not supported.
The sizeof operator can be used for variables, but not data types.

The (type) operator cannot cast to fixed-dimension arrays using C cast
syntax.

Version 4.1

Setting Action Points

Writing Code Fragments

Fortran Constructs Supported

When writing code fragments in Fortran, keep these guidelines in mind.

B Syntax is free-form. No column rules apply.

m One statement is allowed for each line; one line is allowed for each state-
ment.

GOTO, GO TO, ENDIF, and END IF are allowed; ELSEIF is not; use ELSE IF.
B Comment lines can be defined in several formats. For example:
Cl=I+1
/-X-
I=1+1
J=J+1
ARRBAY1(l,J)=1*J
Wi
® The space character is significant and sometimes required. (Some Fortran
77 compilers ignore all space characters wherever they are coded.) For

example:

Valid Invalid

DO 100 1=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X EQ. 1 X.EQ.1

Data Types and Declarations

The following is a list of data types and declarations that you can use within
a Fortran expression.

® You can use the following data types: INTEGER (assumed to be long),
REAL, DOUBLE PRECISION, and COMPLEX.
m Implied data types are not permitted.

B Only simple declarations are permitted. The COMMON, BLOCK DATA,
EQUIVALENCE, STRUCTURE, RECORD, UNION, and array declarations are
not permitted.

B References to variables of any type in the target program are permitted.

Version 4.1 TotalView User's Guide 241

Setting Action Points
“ Writing Code Fragments

Statements

The following list describes the Fortran language statements that you can
use.

B You can use the following statements: assignment, CALL (to subroutines,
functions, and all intrinsic functions except CHARACTER functions in the
target program), CONTINUE, DO, GOTO, IF (including block IF, ENDIF,
ELSE, and ELSE IF), and RETURN (but not alternate RETURN).

® Asan extension to the GOTO statement, you can refer to a line number in
the target program. This line number refers to the tag field number of the
source code line. For example, this GOTO statement causes the program
to branch to source line number 432 of the target program:

GOTO $432;

The dollar sign is required before the line number to distinguish the tag
field number from a statement label.

m All expression operators are supported except CHARACTER operators
and the logical operators .EQV., .NEQV., and .XOR..

Subroutine function and entry definitions are not permitted.
Fortran 90 array syntax is not supported.
Fortran 90 pointer assignment (the => operator) is not supported.

Calling Fortran 90 functions that require assumed shape array arguments
is not supported.

Writing Assembler Code

On Compagq Tru64 UNIX, RS/6000 IBM AIX, and SGI IRIX operating systems,
TotalView lets you use assembler code in evaluation points, conditional
breakpoints, and the Expression Window. However, if you want to use as-
sembler constructs, you must enable compiled expressions. See “Interpreted
Versus Compiled Expressions” on page 217 for instructions.

242 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Writing Code Fragments

To indicate that an expression in the breakpoint or expression windows is an
assembler expression, click on the ASM button in the Expression Window,
as shown in the following figure.

rocess Barrier Breakpoint
B4 Stop ALl Related Processes when Barrier Breakpoint Hit

Evaluate Expresszion

[ddl zera, 1,0

77 e

i Log Gist Event Event Mame:
Yariable to Track:
Format String:

B9 Action Point Enabled
B4 Share Action Paint in All Related Processes

E 0K] E Clear] E Abort] EDelete]

ction Point 23 line 303 in maint0x28c file "fork_loop,cxx”

Figure 109: ASM Button in Expression Window

Assembler expressions are written in the TotalView Assembler Language. In
this language, instructions are written in the target machine’s native assem-
bler language; the operators available to construct expressions in instruc-
tion operands and the set of available pseudo-operators, however, are the
same on all machines.

The TotalView assembler accepts instructions using the same mnemonics
recognized by the native assembler and recognizes the same names for reg-
isters that native assemblers recognize.

TotalView User's Guide 243

Setting Action Points
“ Writing Code Fragments

Some architectures provide extended mnemonics that do not correspond
exactly with machine instructions and which represent important, special
cases of instructions, or provide for assembling short, commonly used se-
quences of instructions. The TotalView assembler recognizes these mne-
monics if:

m They assemble to exactly one instruction.

B The relationship between the operands of the extended mnemonics and
the fields in the assembled instruction code is a simple one-to-one corre-
spondence.

In TotalView Assembler Language, labels are indicated as name:, appearing at

the beginning of a line. Labels may appear alone on a line. The symbols you

can use include labels defined in the assembler expression and all program
symbols.

The TotalView assembler operators are described in the following table:

Table 32: TotalView Assembler Operators
Operators Definition

+ Plus

- Minus (also unary)

* Times

Remainder

/ Quotient

& Bitwise and

~ Bitwise xor

! Bitwise or not (also unary -~ bitwise not)

| Bitwise or

(expr) Grouping

<< Left shift

>> Right shift

“text” Text string, 1-4 characters long, is right justified in a
32-bit word

hi16 (expr) Low 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

244 TotalView User’s Guide Version 4.1

Version 4.1

Setting Action Points

Writing Code Fragments

Table 32: TotalView Assembler Operators (cont.)

Operators Definition
016 (expr) High 16 bits of operand expr
032 (expr) Low 32 bits of operand expr

The TotalView Assembler pseudo-operations are listed in Table 33:

Table 33: TotalView Assembler Pseudo Ops

Pseudo Ops Definition

$debug [0 | 1] Internal debugging option.
With no operand, toggle debugging;
0 => turn debugging off;
1 => turn debugging on

$hold Hold the process

$holdprocess

$holdstopall Hold the process and stop the program group
$holdprocessstopall

$holdthread Hold the thread

$holdthreadstop Hold the thread and stop process
$holdthreadstopprocess

$holdthreadstopall Hold the thread and stop the program group
$long_branch expr Branch to location expr, using a single instruc-

tion in an architecture independent way, with-
out requiring the use of any registers

$ptree Internal debugging option.
Print assembler tree

$stop Stop the process

$stopprocess

$stopall Stop the program group

$stopthread Stop the thread

name=expr Same as def name,expr

align expr |, expr | Align location counter to an operand 1 align-
ment; use operand 2 (or zero) as the fill value for
skipped bytes

ascii string Same as string

asciz string Zero terminated string

TotalView User's Guide

245

Setting Action Points

Writing Code Fragments

Table 33: TotalView Assembler Pseudo Ops (cont.)

Pseudo Ops

bss name,size-expr|,expr]

byte expr |, expr| ...

comm name,expr

data

def name,expr

double expr |, expr] ...

equiv name,name

fill expr, expr, expr

float expr |, expr]| ...

global name
half expr |, expr] ...

lcomm name,expr|,expr]

Isym name,expr

org expr |, expr]

quad expr [, expr] ...

string string
text

word expr |, expr] ...

Zero expr

TotalView User’s Guide

Definition

Define name to represent size-expr bytes of stor-
age in the bss section with alignment optional
expr; the default alignment depends on the size:

if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else
if size-expr >= 2 then 2 else 1

Place expr values into a series of bytes

Define name to represent expr bytes of storage
in the bss section; name is declared global; align-
ment is as in bss without an alignment argument

Assemble code into data section (data)
Define a symbol with expr as it's value
Place expr values into a series of doubles

Make operand 1 be an abbreviation for operand
2

Fill storage with operand 1 objects of size oper-
and 2, filled with value operand 3

Place expr values into a series of floats
Declare name as global

Place expr values into a series of 16 bit words
Identical to bss

Same as def name,expr but allows redefinition of
a previously defined name

Set location counter to operand 1 use operand
2 (or zero) to fill skipped bytes

Place expr values into a series of 64 bit words
Place string into storage

Assemble code into text section (code)
Place expr values into a series of 32 bit words
Fill expr bytes with zeros

Version 4.1

Chapter 9

Visualizing Data

The TotalView Visualizer works with the TotalView debugger to create graphical
images of your program'’s array data. In this chapter, you will learn:

® How the visualizer works

B Launching the Visualizer from TotalView

m Types of data that TotalView can visualize

B Visualizing data from the TotalView Variable Window
B Visualizing data using expressions

B What the Visualizer’'s windows do

®m Changing settings from the Directory Window

B Methods of visualization

®m Changing and manipulating the way data is displayed
B Launching the Visualizer from the command line

B Launching the Visualizer from a third party debugger
m Adapting third party visualizers to TotalView

The Visualizer is not available on all platforms.

How the Visualizer Works

Version 4.1

The Visualizer can be used in two ways: it can be launched from TotalView
to visualize data as you debug your programs and it can be run from the
command line to visualize data dumped to a file in a previous TotalView ses-
sion.

Visualizing your program’s data uses two interactions:

TotalView User's Guide 247

Visualizing Data
“ How the Visualizer Works

B You interact with TotalView to choose what you want to visualize and when
it should make snapshots of your data.

B You interact with the visualizer to choose how you would like your data to
be displayed.

The TotalView debugger handles the first of these interactions, extracting

data and marshalling it into a standard format that it sends down a pipe. The

Visualizer then reads the data from this pipe and displays it for analysis. The

following figure shows this relationship.

TotalView: Extracts data from an array The TotalView Visualizer: Displays
the array data graphically

m (AIEBER
opped) <CTrace Trap> NN (723 5%
i Fr=ori Lo ik &}

" ooomoor @
Oxefpez2d

0
02077772086 7501
{200058920743119
0’19747z

Sends data in
standard format to
a visualizer

skpbRaElbRAs

FIGURE 110: TotalView Visualizer Connection

You can send data directly from TotalView to the Visualizer while you are
debugging your program. You can also send data from TotalView directly to
a third party visualizer. Or, you can launch the TotalView Visualizer from the

command line using data you have already saved to a file. Figure 111 shows
these relationships.

248 TotalView User’s Guide Version 4.1

Visualizing Data

Configuring TotalView to Launch the Visualizer

TotalView Launch Visuz_alizer TotalView
s — from TotalView o Visualizer
A

Launch Visualizer
Save Data from Command Line
to File

=

Launch Third
Party Visualizer

\ 4

Third Party -
Visualizer | \SSltJalllngr
ii' ata File

FIGURE 111: TotalView Visualizer Relationships

A

Configuring TotalView to Launch the Visualizer

TotalView automatically launches the Visualizer when it is requested in a
variable, breakpoint, or expression window. After TotalView launches the
Visualizer, it pipes data to the Visualizer’s standard input so you can visual-
ize datasets as your program creates them.

If you disable visualization, TotalView silently ignores all attempts to use the
Visualizer. This is useful when you want to execute some code containing
evaluation points that do visualization, but do not want to individually dis-
able all the evaluation points.

To change the Visualizer launch options interactively, select the Visualizer
Launch Window from the Root Window. A dialog box appears, as shown in

Figure 112. You can now tell the Visualizer to perform the following opera-
tions:

m Change the auto launch option. If you do not want it to launch the Visual-
izier automatically and disable visualization, clear the TotalView Visual-
izer Auto Launch Enabled checkbox.

m [f the visualizer uses a customized command when it starts, enter it in the
Visualizer launch command box.

Version 4.1 TotalView User's Guide 249

Visualizing Data
“ Configuring TotalView to Launch the Visualizer

B TotalView Yisualizer Auto Launch Enabled

Vizualizer launch command:

Bisualize

Haximum permissible ranky

ook £ Tefaults § b obort §

FIGURE 112: The Visualizer Launch Window

m Change the maximum permissible rank. Edit this value (the supported
range is 1 through 16) if you plan to save the data exported from the
debugger or display it in a different visualizer.

The maximum permissible rank (the default is 2), ensures that data
exported can be used in the TotalView Visualizer—the Visualizer displays
only two dimensions of data. This limit does not apply to data saved in
files, or to visualizers that can display more than two dimensions of data.

m Clicking on the Defaults button sets options to their defaults. This reverts

to its standard default even if you have used an X resource to change it.
When you are done, click on the OK button. To abandon your edits, click on
the Abort button.

If you disable visualization or change the visualizer launch string while a
visualizer is running, TotalView closes the pipe to the visualizer. If you reen-
able visualization, TotalView launches a new Visualizer process the next time
you visualize something.

You can change the shell command that TotalView uses to launch the visu-
alizer by editing the Visualizer launch command. (You can even use this
launch to command to run a different visualizer.) Or, you can save this infor-
mation for viewing at another time. For example, you can save visualization
information by entering the following command:

cat > your file

Later, you can visualize this information using one of the following (equiva-
lent) commands:

visualize —persist < your file
visualize —file your file

250 TotalView User’s Guide Version 4.1

Visualizing Data

Data Types that TotalView Can Visualize

You can preset the visualizer launch options by setting X resources. For
details, see Chapter 11 "X Resources” on page 275.

Data Types that TotalView Can Visualize

The data selected for visualization is called a dataset. Each dataset is tagged
with a numeric identifier that lets the Visualizer know whether it is seeing a
new dataset or an update to an existing dataset. TotalView creates the iden-
tifier from the program, base address, and type of the data. This ensures
that when you visualize the same data by different methods, the same set of
images is updated. Note that stack variables at different recursion levels or
call paths appear as separate images instead of updates to an existing
image.

By default, TotalView restricts the type of data it can visualize to one and
two dimensional arrays of character, integer, or floating point data. This data
must be located in memory, and not in registers. You can visualize arrays
with more dimensions by using an array slice expression to create a sub-
array with fewer dimensions. Figure 113 shows a three dimensional variable
sliced into two dimensions by selecting a single index in the middle dimen-

sion.
TR L oadinzy
{at (x2fea?320) Tupe: doublel41[1281[25E] it
Slice: [$101:110:] [
Trnde:x Value
[01C1100] 0, 2055554552065495
[0101101] 0. 202747220662501
[0101102] 0, 200056920743119
[0IC11L3] 0,197484779377555
[0101104] 0,195031005384543
[01[11[5] 0,192695794038728
[01[11LE] 0,19047932761826
[0IC11L7] 0,188381775921959 T4

FIGURE 113: A Three Dimensional Array Sliced to Two Dimensions

Version 4.1 TotalView User's Guide 251

Visualizing Data
“ Visualizing Data from the Variable Window

Visualizing Data from the Variable Window

The simplest way to visualize data is by using the Variable Window. (For
details on the Variable Window, see Chapter 7 “Examining and Changing Data”
on page 143.) Open a Variable Window on an array and stop program execu-
tion at the point where you want to visualize the array’s values. Here is an

example.

e e L
(gt Oxeff7F368) Tupe: double[25610255] i

Slice: [:10:] D

Index Value

(0101 0

(01011 0

[o1C21 0

[01[3] 0

[0104] 0

FIGURE 114: Variable Window

Editing the type and slice expressions fields lets you select the data you
want visualized. You can display slices to limit the amount of data. (See "Dis-
playing Array Slices” on page 167.) Limiting the amount increases the Visual-
izer's speed.

Launch the Visualizer program from the Variable Window by selecting the
Visualize command from the Variable Window. The Visualizer will then cre-
ate the initial Data Window display. If you reuse this command, TotalView
send updated data values and the Visualizer updates its display.

You can visualize a Laminated Data Pane using the Visualize command. (See
“Visualizing a Laminated Data Pane” on page 183.) The process or thread index
forms one of the dimensions of the visualized data. This means that you can
only visualize scalar or vector information. If you do not want the process
or thread index as a dimension, use a non-laminated display.

Visualizer data displayed through a Variable Window is not automatically
updated as you step through your program. You must explicitly request an
update by reissuing the Visualize command while in a Variable Window.

252 TotalView User’s Guide Version 4.1

Visualizing Data

Visualizing Data in Expressions

Visualizing Data in Expressions

Version 4.1

The $visualize intrinsic (built-in) function lets you use TotalView's expres-
sion system to visualize data. This function lets you:

B Visualize several different variables from a single expression.

B Visualize variables in the Expression Evaluation Window.

® Visualize one or more variables from an evaluation point.

The syntax for the $visualize intrinsic is:
$visualize (array [, slice_string])

The array parameter is an expression naming the dataset being visualized.
The optional slice_string parameter is a quoted string defining a constant
slice expression that modifies the dataset named using the array parameter.

The following examples assume that your program has a two dimensional
array called my_array.

NOTE In the following examples, notice that the array’s dimension ordering differs.

TaBLE 34: $visualize examples for C and Fortran

C Fortran

Pvisualizelmy array; $visualize (my array)

$visualize (my_array,”[::21[10:151") $visualize (my _array,'(11:16,::2)’)
$visualize (my_array,"[121[:1"); $visualize (my array,’(:,13)")

The first example visualizes the entire array. The second example selects
every second element in the array’s major dimension; it also clips the minor
dimension to all elements in the given (inclusive) range. The third example
reduces the dataset to a single dimension by selecting one sub-array.

You may need a cast expression to let TotalView know what the dimensions
of the variable being visualized are. For example, here is a procedure that
passes a two dimensional array parameter that does not specify the extent
of the major dimension.

void my_procedure (double my_arrayll[32])
{ /* procedure body ¥/ }

TotalView User's Guide 253

Visualizing Data
“ The TotalView Visualizer

The following cast expression is needed because the first dimension is not
specified:

$visualize (*(double[3211321*)my _array);

You can use $visualize in the expression window or by adding an expression
to a breakpoint to create an evaluation point. But note that TotalView can-
not compile an evaluation point or expression that contains $visualize.
Instead, the TotalView debugger interprets these statements. See “Defining
Evaluation Points” on page 213 for information about compiled and inter-
preted expressions.

Using $visualize in an expression window is a handy technique to refine an
array and slice arguments or to update the Visualizer display of several
arrays simultaneously.

Visualizer Animation

Using $visualize in an evaluation point lets you animate the changes that
occur in your data because the Visualizer will update the array’s display
every time TotalView reaches the evaluation point. This technique lets you
create a visual animation of the array as the program executes.

The TotalView Visualizer

254

The Visualizer has two types of windows:

m A Directory Window
A single main window lists the datasets that you can visualize. You can
use this window to set global options and to create views of your
datasets.

m Data Windows
The Data Windows contain images of the datasets. By interacting with a
Data Window, you can change its appearance and set dataset viewing

options. Using the Directory Window, you can open several Data Windows
on a single dataset to get different views of the same data.

TotalView User’s Guide Version 4.1

Visualizing Data

The TotalView Visualizer

The following figure shows a Directory Window and two Data Windows. The
left Data Window shows a graph view while the right window shows a surface
View.

1.00

0.8

0.64

0.45

0.27

0.00

-0.00

0.3 -0.27

-0.45

0.2 —0.64

—0.%:2

0.1 -1.00
0.0

0 20 40 60 80

FIGURE 115: Visualizer Windows

Directory Window

The Directory Window contains a list of the datasets you can display. For
example:

FIGURE 116: Sample Visualizer Directory Window

Version 4.1 TotalView User's Guide 255

Visualizing Data
“ The TotalView Visualizer

You can select a dataset by left-clicking on it and you can only select one
dataset at a time. Right-clicking in the dataset list displays the View menu.
From this menu, you can select Graph or Surface visualization. Whenever
TotalView sends a new dataset, the Visualizer updates its list of datasets. To
delete a dataset from the list, click on it, then display the File menu and
select Delete.

You can automatically visualize the selected dataset by left-clicking in the
dataset and pressing Return. You can also double-left-click in the dataset
list to select and auto-visualize a dataset.

The following table shows the Directory Window’s menubar commands.

TasLE 35: Directory Window Menu Commands
Menu Command Meaning

File Delete Deletes the currently selected dataset. It
removes the dataset from the dataset list and
destroys any Data Windows displaying it

Exit Closes all windows and exits the Visualizer
View Graph Creates a new Graph Window; see "Graph Data
Window” on page 259 for more detail
Surface Creates a new Surface Window; see “Surface
Data Window” on page 261 for more detail
Options Auto Visualize This item is a toggle; when enabled, the

Visualizer automatically visualizes new
datasets as they are read

Data Windows

Data Windows display graphical images of your data. The following figure
shows a surface view and a graph view. Every Data Window contains a menu
bar and a drawing area. The Data Window title (which isn’t shown in this fig-
ure) is its dataset identification.

The File menu on the menu bar is the same for all Data Windows. Any other
items on the menu bar are specific to particular types of Data Window. The

256 TotalView User’s Guide Version 4.1

Visualizing Data

The TotalView Visualizer

40 60 80 100 120

1
HFOoOoOoOQQQoOoOoo e

ckpaNgENERRE

FIGURE 117: Sample Visualizer Data Windows

common Data Window menu commands are described in the following
table.

TaBLE 36: Data Window File Menu Commands

Command Meaning
Close Closes the Data Window.

Delete Deletes the Data Window's dataset from the dataset list. This
also destroys any other Data Windows viewing the dataset.

Directory Raises the Directory Window to the front of the desktop. If the
Directory Window is minimized, it is restored.

New Base Creates a new Data Window using the same visualization
Window method and dataset as the current Data Window.

Version 4.1 TotalView User's Guide 257

Visualizing Data
“ Views of Data

TaBLE 36: Data Window File Menu Commands (cont.)
Command Meaning

Options Pops-up a window of viewing options. This window has a control
area and an action area. The control area is specific to the Data
Window. The action area contains three buttons as follows:
OK—Applies changes and removes the Options Window,
Apply—Applies the options settings, but leave the Options
Window up.

Cancel—Closes the Options Window and discards any changes
not yet applied. You can also cancel changes by closing the
Options Window.

The drawing area displays the image of your data. You can interact with the
drawing area to alter the view of your data. For example, in the surface view,
you can rotate the graph to view it from different angles. You can also get
the value and indices of the dataset element nearest the cursor by left-click-
ing on it. A pop-up window displays the information. For details on this and
other ways to manipulate a surface view, see Table 38 “Surface Data Window
Manipulations” on page 264.

Views of Data

" = m = == === E@EE=E@EEE@=E=E@=E8=82@=E8=858=823858858388%8388%3@8383@8@83=
Different types of datasets require different graphical views to display their
data. For example, a graph is more suitable for displaying one dimensional
datasets or two dimensional datasets where one of the dimensions has a
small extent; however, a surface view is necessary for displaying a two
dimensional dataset.

When the Visualizer is launched, one of the following actions will occur:

m [f a Data Window is currently displaying the dataset, it is raised to the top
of the desktop. If the window was minimized, it is restored.

m If dataset was previously visualized but no Data Window currently exists
for it, the Visualizer creates a new Data Window using the most recent
visualization method.

258 TotalView User’s Guide Version 4.1

Version 4.1

Visualizing Data

Views of Data

m [f the dataset has never been visualized, the Visualizer chooses one a
method, based on how well a given dataset matches an ideal dataset for
each method.

The Visualizer can automatically choose a visualization method and create
a new Data Window when it reads a new dataset. While the dataset is being
updated, the Visualizer uses the method previously used. You can enable

and disable this feature from the Options menu in the TotalView Visualizer
Directory Window.

Graph Data Window

The Graph Window displays a two dimensional graph of one or two dimen-
sional datasets. If the dataset is two dimensional, the Visualizer displays
multiple graphs. When you first create a Graph Window on a two dimen-
sional dataset, the Visualizer uses the dimension with the larger number of
elements for the X axis. It then draws a separate graph for each sub-array
having the smaller number of elements. If you do not like this choice, you
can transpose the data.

NOTE You probably do not want to use a graph to visualize two dimensional
datasets with large extents in both dimensions as the display will be very cluttered.

You can display graphs with markers for each element of the dataset, with

lines connecting dataset elements, or with both lines and markers as shown
in Figure 118. See "Displaying Graphs” on page 260 for more details. Multiple
graphs are displayed in different colors. The X axis of the graph is annotated
with the indices of the long dimension. The Y axis shows you the data value.

You can scale and translate the graph, or pop up a window displaying the
indices and values for individual dataset elements. See “Manipulating Graphs”
on page 260 for details.

TotalView User's Guide

259

260

Visualizing Data
“ Views of Data

FIGURE 118: Visualizer Graph Data Window

Displaying Graphs

The Graph Options dialog box, which is invoked by selecting the Options
command on the File menu, lets you control how the Visualizer displays the
graph, as is described in Table 37.

TaBLE 37: Graph Data Window Options Dialog

Toggle Meaning

Lines Toggles the display of lines connecting dataset elements
Points Toggles the display of markers for each dataset element
Transpose Toggles the choice of dimension to map onto the X axis of the

graph for two dimensional datasets

Manipulating Graphs

You can manipulate the way the graph is displayed using the following
actions:

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.

TotalView User’s Guide Version 4.1

Visualizing Data

Views of Data

Translate Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the graph.

Zoom Press the Control key and hold down the left mouse
button. Drag the mouse button to create a rectangle
that encloses an area. This area is then scaled to fit the
drawing area.

Reset View Press r to reset the display to its initial state.

Query Hold down the left mouse button near a graph marker.
A window pops up displaying the dataset element’s
indices and value.

Figure 119 shows a graph view of two dimensional random data created by
selecting Points and deselecting Lines in the graph Data Window options
dialog box.

File

L §
6000000005 #§* . pe £ 20 1 s
* @ = af Tl *

s 8

- -
- -

4qu000000I e e t
* »

|

&

I s
EOOOOOOOOI s LI M o

FIGURE 119: Display of Random Data

Surface Data Window

The surface Data Window displays two-dimensional datasets as a surface in
two or three dimensions. The dataset’s array indices map to the first two
dimensions (X and Y axes) of the display. Figure 120 shows a two dimen-
sional map, where the dataset values are shown using only the Zone option.

Version 4.1 TotalView User's Guide 261

Visualizing Data
n Views of Data

(This demarcates ranges of element values.) For a zone map with contour
lines, turn the Zone and Contour settings on and Mesh and Shade off.

1.00
0,82
0,64
0,45
0.27
0,09
=-0.09
-0.27
-0.45
-0.64
-0.82
=-1.00

FIGURE 120: Two Dimensional Surface Visualizer Data Display

You can display random data by selecting only the Zone setting and turning
Mesh, Shade, and Contour off. The display shows where the data is located
and allows you to click on it to get the values of the various points.

Figure 121 shows a three dimensional surface that maps element values to
the height (Z axis).

Displaying Surface Data

The controls within the Options dialog box let you control the display of the
surface data. In the Data Window, display the File menu and select the
Options command. This dialog box has the following choices:

Mesh Toggles the mesh option. When this option is set, the
surface is displayed in three dimensions, with the XY
grid projected onto the surface. When neither this
option nor the shade option are set, the surface is dis-
played in two dimensions (See Figure 120).

262 TotalView User’s Guide Version 4.1

Visualizing Data

File View

Views of Data

posSooossoon
ERRGEEEE5RRE

FIGURE 121: Three Dimensional Surface Visualizer Data Display

Shade

Contour

Zone

Auto Reduce

Version 4.1

Toggles the shade option. When this option is set, the
surface is displayed in three dimensions and shaded
either in a “flat” color to differentiate the top and bot-
tom sides of the surface, or in colors corresponding to
the value if the zone option is also set. When neither
this option nor the mesh option are set, the surface is
displayed in two dimensions. (See Figure 120.)

Toggles the contour option. When this option is set,
contour lines are displayed demarcating ranges of ele-
ment values.

Toggles the zone option. When this option is set, the
surface is displayed in colors showing ranges of ele-
ment values.

Toggles the auto reduce option. When this option is set,
the surface displayed is derived by averaging over
neighboring elements in the original dataset. This
speeds up visualization by reducing the resolution of
the surface. Clear this option if you want to accurately
visualize all dataset elements.

The Auto Reduce option allows you to choose
between viewing all your data points—which takes

TotalView User's Guide

263

264

Visualizing Data
“ Views of Data

longer to appear in the display—or viewing an averag-
ing of data over a number of nearby points. The default
for Auto Reduce is on so your display appears faster.

You can reset the viewing parameters to those used when the Visualizer first
came up by selecting the. Reset View command contained within the View
menu in the Data Window. This command restores all translation, rotation,
and scaling. This resets the view of the surface to the initial state and
enlarges the display slightly.

Manipulating Surface Data

You can rotate a three dimensional surface to change the viewing angle so
that you can see parts of the surface that are hidden or get a detailed view
of part of the surface. When you click and hold the middle mouse button in
the drawing area, then drag the mouse. The image changes to a wire-frame
bounding box of the surface that moves with the mouse. You can rotate the
view in two dimensions simultaneously, or select a single axis at a time to
rotate. When you let go of the button, you can see the graph from the new,
selected vantage point.

In addition to rotating the graph, you can manipulate it several other ways,
as shown in Table 38. You can display the indices and values of individual
dataset elements in a pop up window. You can control scaling and translat-
ing separately, or together with a zoom. You can query the values of individ-
ual elements. And you can reset the view to what it was when you started.

TaBLE 38: Surface Data Window Manipulations

Action Description

Query Hold down the left mouse button near the surface. A window
pops up displaying the nearest dataset element’s indices and
value.

Reset View Press r to reset translation and scaling. This does not reset the
rotation.

Rotate Hold down the middle mouse button and drag the mouse to
freely rotate the surface. You can also press the x, y, or z keys to
select a single axis of rotation.

TotalView User’s Guide Version 4.1

Visualizing Data

Launching the Visualizer from Command Line

TaBLE 38: Surface Data Window Manipulations (cont.)

Action Description

Scale Press the Control key and hold down the middle mouse button.
Move the mouse down to zoom in on the center of the drawing
area, or up to zoom out.

Translate Press the Shift key and hold down the middle mouse button.
Moving the mouse drags the surface.

Zoom Press the Control key and hold down the left mouse button.
Drag the mouse button to create a rectangle that encloses the
area of interest. The area is then translated and scaled to fit the
drawing area.

Launching the Visualizer from Command Line

To start the Visualizer from the shell, use the following syntax:

visualize [file filename | -persist |

where:
—file filename Reads data from filename instead of reading from stan-
dard input.
—persist Continues to run after encountering an EOF on stan-

dard input. If you do not use this option, the Visualizer

exits as soon as it reads all of the data from standard

input.
By default, the Visualizer reads its input data sets from its standard input
stream and exits when it reads an EOF on standard input. When started by
TotalView, the Visualizer normally reads its data from a pipe, ensuring that
the Visualizer exits when TotalView does. If you want the Visualizer to con-
tinue to run after it exhausts all input from the standard input stream,
invoke it using the —persist option.

If you want to read data from a file, invoke the Visualizer with the —file file-
name option. For example:

visualize —file my_data_set file

Version 4.1 TotalView User's Guide 265

Visualizing Data
“ Adapting a Third Party Visualizer

The Visualizer reads all the datasets in the file. This means that the images
you see are of the last versions of the datasets in the file.

The Visualizer supports the generic X toolkit command line options. For
example, you can start the Visualizer with the Directory Window minimized
by using the —iconic option. Your system manual page for the X server or the
The X WINDOW SySTEM USER'S GUIDE, by O'Reilly & Associates lists the
generic X command line options in detail.

You can also customize the Visualizer by setting X resources in your resource
files or on the command line with the —xrm resource_setting option. The
available resources are described in Chapter 12 “TotalView Command Syntax”
on page 299. Use of X resources to modify the default behavior of TotalView
or the TotalView Visualizer is described in greater detail in Chapter 11 “X
Resources” on page 275.

Adapting a Third Party Visualizer

TotalView passes a stream of datasets to the Visualizer encoded in the for-
mat described later in this section. This means that you can use this data
with other programs. Here are some things you should be aware of when
using this data with other programs:

B TotalView and the Visualizer must be running on the same machine archi-
tectures; that is, TotalView assumes that word lengths, byte order, and
floating-point representations are identical. While sufficient information
in the dataset header exists to detect when this is not the case (with the
exception of floating-point representation), no method for translating
this information is supplied.

m TotalView transmits datasets down the pipe in a simple unidirectional
flow. There is no handshaking protocol in the interface. This requires the
Visualizer to be an eager reader on the pipe. If the Visualizer does not read
eagerly, the pipe will back up and block TotalView.

The dataset format is described in the TotalView distribution in a header file
named include/visualize.h in the TotalView installation directory. Each
dataset is encoded with a fixed-length header followed by a stream of array
elements. The header contains the following fields.

266 TotalView User’s Guide Version 4.1

Version 4.1

Visualizing Data

Adapting a Third Party Visualizer

vh_axis_order Contains one of the constants vis_ao_row_major or
vis_ao_column_major.

vh_dims Contains information on each dimension of the
dataset. This includes a base, count and stride. Only
the count is required to correctly parse the dataset.
The base and stride only give information on the valid
indices in the original data.

Note that all VIS_MAXDIMS of dimension information
is included in the header, even if the data has fewer
dimensions.

vh_effective_rank
Contains the number of dimensions that have an

extent larger than 1.

vh_id Contains the dataset ID. Every dataset in a stream of
datasets is numbered with a unique ID so that updates
to a previous dataset can be distinguished from new
datasets.

vh_item_count Contains the total number of elements to be expected.

vh_item_length Contains the length (in bytes) of single element of the
array.

vh_magic Contains VIS_MAGIC, a symbolic constant to provide
a check that this is a dataset header and that byte
order is compatible.

vh_title Contains a plain text string of length VIS_MAXSTRING
that annotates the dataset.

vh_type Contains one of the constants vis_signed_int,
vis_unsigned_int, or vis_float.
vh_version Contains VIS_VERSION, a symbolic constant to pro-
vide a check that the reader understands the protocol.
Types in the dataset are encoded by a combination of the vh_type field and
the vh_item_length field. This allows the format to handle arbitrary sizes of
both signed and unsigned integers, and floating point numbers.

The vis_float constant corresponds to the default floating point format
(usually, IEEE) of the target machine. The Visualizer does not handle values

TotalView User's Guide

267

268

Visualizing Data
“ Adapting a Third Party Visualizer

other than the default on machines that support more than one floating
point format.

Although a three-byte integer is expressible in the Visualizer’s dataset for-
mat, it is unlikely that the Visualizer will handle one. The Visualizer only han-
dles data types that correspond to the C data types permitted on the
machine where the Visualizer is running.

Similarly, the long double type varies significantly depending on the C com-
piler and target machine. Therefore, visualization of the long double type is
unlikely to work if you run the Visualizer on a machine that is different from
the one where you extracted the data.

In addition, you need to be aware of these data type differences if you write
your own visualizer and plan to run it on a machine that is different from the
one where you extract the data.

The data following the header is a stream of consecutive data values of the
type indicated in the header. Consecutive data values in the input stream
correspond to adjacent elements in vh_dims[0].

You can verify that your reader’s idea of the size of this type is consistent
with TotalView by checking that the value of the n_bytes field of the header
matches the product of the size of the type and the total number of array
elements.

TotalView User’s Guide Version 4.1

Chapter 10

Troubleshooting

This chapter describes how to solve common problems that you might encounter
while using TotalView.

Overview

This chapter discusses the following:

B Assembler is shown instead of source code

B Error creating new process

B Error launching process

B Fatal error: Checkout ... failed

® Fatal error in TotalView

B Internal error in TotalView

B License manager doesn’t operate correctly

® Out of memory error

B Pressing Ctrl-C in an xterm window causes TotalView to exit

B Program behaves differently under TotalView control: setuid issues

® Program behaves differently under TotalView control: SIGSTOP problems
B Program'’s symbols aren’t shown

B Single stepping is slow or TotalView is slow to respond to breakpoints
B Source code doesn't appear in Source Code Pane

B TotalView can't find your source code

m TotalView server, tvdsvr, fails to start on a remote node

Version 4.1 TotalView User's Guide 269

1 O Troubleshooting
_ Assembler is shown instead of source code

® When debugging HPF programs, HPF source code does not appear in the
Process Window; only {77 code appears

B Windows do not appear or operate correctly
m X resources are not recognized

The TotalView Release Notes contains extensive information on known
problems. There you will find information on configuring TotalView, required
operating patches, and workarounds.

If you cannot solve a problem, please contact us. You will find our bug
reporting form in the support area of our web site and in our Release Notes.
Or, you can phone us at 1-800-856-3766 in the United States or (+1) 508-
875-3030 worldwide.

The Problems

Assembler is shown instead of source code
Check to make sure that you compiled your program using —g.

Error creating new process

m Increase the swap space on your machine. For details, see “Swap Space” on
page 331.

m Increase the number of process slots in your system. See your operating
system documentation for details.

B Check the xterm window to see if the execve() call failed, and if it did, set
the PATH environment variable.

B Make sure that the /proc filesystem is mounted on your system. For
details, see "Mounting the /proc File System” on page 330.

Error launching process
B Run your program from the UNIX command line prompt to see if it will

load and start executing. (If it won't start from the UNIX command line,
TotalView will not be able to start it.)
If it doesn’t run, make sure your program is built for the machine on which you
are debugging. Or, an execv() system call fails because the file does not have
execute permission. Or, maybe you are trying to run a 64-bit application on a
machine that only runs 32-bit applications.

270 TotalView User’s Guide Version 4.1

Version 4.1

Troubleshooting

Invalid license key

B Check that all shared libraries needed by your application are accessible.
For example, you may not have properly set the dynamic library runtime
loader path (which is LD _LIBRARY PATH most systems).

B Run your program from the UNIX command line prompt to see if it will
load and start executing. If it begins executing, you can start TotalView,
then attach to the executing program.

B TotalView cannot launch programs that are started by shell scripts. If it

must be started by a shell script, you must manually start it then attach to
it from within TotalView.

Fatal error: Checkout ... failed

m Check the value of the LM_LICENSE_FILE environment variable. Make
sure the value ends with the string license.dat. The default location for

this file is in the flexm-6.1 subdirectory within your TotalView installation
directory.

B Make sure the TotalView license manager Imgrd is running on the license
manager host machine. The name of this machine is listed in the SERVER
line of your license.dat file. The default location for this daemon is in the

flexlm-6.1/platform/bin subdirectory within your TotalView installation
directory.

B Make sure that the Imgrd that is running matches the one which came
with your TotalView distribution. That is, if you are running other software
that uses the FLEXIm license manager or if you haven't upgraded an older
version of FLEXIm, you might not be running the latest version.

Fatal error in TotalView
Report this problem. See “Reporting Problems” on page xvi.

Internal error in TotalView
Report this problem. See “Reporting Problems” on page xvi.

Invalid license key
Compare the format of your license.dat license key file with the one dis-
played in Chapter 2 of the TOTALVIEW INSTALLATION GUIDE. If you find stray
characters in the file (for example "=3D"), use a text editor to remove them.
After making these changes, stop the Imgrd license manager daemon and
then restart it using the toolworks_init script.

TotalView User's Guide 271

1 O Troubleshooting
_ License manager doesn’t operate correctly

License manager doesn’t operate correctly
Set the LM_LICENSE_FILE environment variable to the pathname of the
TotalView license file. See the TOTALVIEW INSTALLATION GUIDE for details.

Out of memory error
m Increase the swap space on your machine. For details, see “"Swap Space” on
page 331.
B Increase the data size limit in the C shell. Use the C shell’s limit
command, such as:
% limit datasize unlimited

Pressing Ctrl-C in an xterm window causes TotalView to exit
Start TotalView using the —ignore_control_c command-line option.

Program behaves differently under TotalView control: setuid issues
Make sure your program does not setuid or exec another program that
does, for example, rsh. Normally, the operating system does not allow a
debugger to debug a setuid executable nor allow a setuid system call while
a program is being debugged. Often these operations fail silently. To debug
setuid programs, login as the target UID before starting TotalView.

Program behaves differently under TotalView control: SIGSTOP problems
TotalView uses the SIGSTOP signal to stop processes. On most UNIX sys-
tems, system calls can fail with errno set to EINTR when the process receives
a SIGSTOP signal. You need to change your code so that it handles EINTR
failures. For example:

do {
n = read(fd,buf,nbytes);
} while (n < 0 &8 errno == EINTR);
When a system call is interrupted with a signal (for example, errno ==
EINTR), you need to retry it. This problem occurs because TotalView stops
processes when it updates the displays. If the process is in a system call, the
system call fails with EINTR.

For example, assume that your program has the following code fragment:

printf('creating scheduler thread...");

if (O != (status = pthread createl
&scheduler_thread, &detached_attr,
&scheduler_thread wrapper, (void *)scheduler))) {

272 TotalView User’s Guide Version 4.1

Troubleshooting

TotalView can't find your source code

error_func(ERR_LVL, FILE , LINE_ ,
"Pthread _create sScheduler, %d, %s",
status, strerror(status));

}

You could restructure it to:

printf("creating scheduler thread...");
do {
status = pthread createl

&scheduler_thread, &detached_attr,
8scheduler_thread wrapper, (void ¥)scheduler];
} while (0 != status && errno == EINTR);

if (O != status) {
error_func(ERR_LVL, FILE , LINE_ ,
"Pthread _create sScheduler, %d, %s",
status, strerror(status));

}
Program’s symbols aren’t shown
Check to make sure that you compiled your program using —g.

Single stepping is slow or TotalView is slow to respond to breakpoints
m Close some of the Variable Windows that you have open.
m The Global Variables Window is open and has a large number of variables.
Close the Global Variables Window.

m If you set a breakpoint in a source file that has not yet been referenced or
if you single-step into one, TotalView must read the file’s symbol table.
This can temporarily delay TotalView's response.
Source code doesn’t appear in Source Code Pane
B Set the search path for directories with the Set Search Directory (d)
command in the Process Window.
m TotalView may be in the kernel or in a library routine for which source is
not available.
TotalView can't find your source code
Set the search path for directories with the Set Search Directory (d) com-
mand in the Process Window.

Version 4.1 TotalView User's Guide 273

1 O Troubleshooting
_ TotalView server, tvdsvr, fails to start on a remote node

TotalView server, tvdsvr, fails to start on a remote node
Re-edit the server launch command field, click OK, and launch the server
again. For information, see “Starting the Debugger Server for Remote Debugging

4

on page 55.

When debugging HPF programs, HPF source code does not appear in the
Process Window; only f77 code appears

When compiling HPF programs be sure to set the —-g and -Mtotalview
options when compiling and linking your programs.

Windows do not appear or operate correctly
® Your DISPLAY environment variable is not set correctly.

® The resource "TOTALVIEW* USETRANSIENTFOR” on page 294 is not set
correctly. Change it from on to off, or from off to on.

m Start Totalview with the —grab command-line option.
B Use the xhost + command to allow all hosts to access your display.
X resources are not recognized

m Use the xrdb command (part of the X Window System) to display the
current X resources:

xrdb -query

m Use the xrdb command to load your X resources:
xrdb -load $HOME/. Xdefaults

B Read the xrdb manual page for more information.

274 TotalView User’s Guide Version 4.1

Chapter 11

X Resources .

This chapter provides reference information about the X Window System
resources that you can use to customize TotalView or the TotalView Visualizer.
You can use these resources in your X resources files (such as .Xdefaults on UNIX
systems or decw$sm_general.dat on VMS systems).
For information on X resources files, refer to the X Window System docu-
mentation that came with your machine or the X WINDOW SYSTEM USER’S
GUIDE, by O'Reilly & Associates (ISBN 1-56592-015-5).

On most UNIX systems, you load your X resources file using the xrdb com-
mand (part of the X Window System executables). For example:

xrdb —load $HOME/. Xdefaults

TotalView X Resources

You can override some of the resources with command-line options for the
totalview command, as described in Chapter 12 “TotalView Command Syntax”
on page 299.

NOTE You can specify any of the following X resources on the command line using
the “—Xresource=value" command line option. For example, to set totalview*stopAll
to false, you could specify the —stopAll=false command line option. Note that the
string “totalview*" is omitted from the command line

Window Locations: Values for the location of windows are expressed as:

=widthxheight +x+y

Version 4.1 TotalView User's Guide 275

1 1 X Resources
_ totalview*arrowBackgroundColor

where width is the width of the window in pixels, feight is the height of the
window in pixels, x is the distance from the upper-left corner of the window
to the left screen edge in pixels, and y is the distance from the upper-left
corner of the window to the top screen edge in pixels. A value of -1 for x or
y indicates that the window should be centered in the screen with respect
to the x-axis or y-axis. If desired, you can express x or y as negative numbers
to indicate the distance from the lower-right corner of the window to the
bottom screen edge or right screen edge instead of the distance from the
upper-left corner. A value of zero (0) indicates that TotalView should use the
default value. Also, you can supply just the size (width and height), and Total-
View will use the default location (x and y) with it.

As an example, the expression =0x0-1+20 uses the default width and
height, centers the window horizontally, and places the window 20 pixels
down from the top of the screen. The expression =330x120+20-20 makes
the window 330 pixels wide by 120 pixels high and places the window 20 pix-
els from the left edge of the screen and 20 pixels up from the bottom edge
of the screen.

totalview*arrowBackgroundColor: color

Default: black

Sets the background (outline) color of PC arrow to color.
totalview*arrowForegroundColor: color

Default: yellow2

Sets the foreground (inner) color of PC arrow to color.
totalview*askOnDlopen: {true | false}

If true (default), TotalView will ask you about stopping processes that
dynamically load a new shared library using the dlopen or load (AIX only)
system calls. If false, TotalView will never ask about stopping a process that
dynamically loads a shared library. See “Debugging Dynamically Loaded Librar-
les” on page 338.

Override with: —ask_on_dlopen option (overrides false)
—-no_ask_on_dlopen option (overrides true)

276 TotalView User’s Guide Version 4.1

X Resources

totalview*barrierFontForegroundColor

totalview*autoLoadBreakpoints: {true | false}

If true (default), automatically load action points from the file
filename.TVD.breakpoints. If false, you use the STOP/BARR/EVAL/ELOG —
Load All Action Points command in the Process Window to load action
points.

Override with: —lb option (overrides false)
-nlb option (overrides true)

totalview*autoRetraceAddresses: {on | off}

If on (default), TotalView will retrace the sequence of dive operations per-
formed in a Variable Window and recompute a new address for the variable.
If off, TotalView does not retrace addresses.

totalview*autoSaveBreakpoints: {true | false}

If false (default), do not automatically save action points to an action points
file when you exit. You use the STOP/BARR/EVAL/ELOG — Save All Action
Points command in the Process Window to save action points.

Override with: —sb option (overrides false)
—-nsb option (overrides true)

totalview*backgroundColor: color
Default: white
Sets the general background color to color.
totalview*barrierForegroundColor: color
Default: blue
Sets the color of the barrier point icon.
totalview*barrierFontForegroundColor: color
Default: blue

Sets the color of the font used to show the H and Hold indicators for held
processes.

Version 4.1 TotalView User's Guide 277

1 1 X Resources
_ totalview*barrierStopAll

totalview*barrierStopAll: {true | false}

Same as
totalview*processBarrierStopAllRelatedProcesses\WhenBreakpointHit.

totalview*blindMouse: {on | off}

If on (default), allow “mouse ahead,” the queuing of mouse clicks (similar to
typing ahead in a shell). If off, successive mouse clicks are ignored until
TotalView responds to the first mouse click.

totalview*breakFontForegroundColor: color

Default: orange

Sets the color of "B” state to color.
totalview*breakpointWindLocation: =widthxheight+x+y
Specifies placement of the first Action Points Window:

Default width height X
columns(70) lines(12) 335 10

totalview*bulkLaunchBaseTimeout: n

Sets the base timeout period when performing a bulk server launch to a
value from 1 to 3600 (1 hour).

totalview*bulkLaunchincrTimeout: #n

Sets the incremental timeout period that TotalView waits for a process to
launch during a bulk server launch. This value is from 1 to 360 (6 minutes).

totalview*bulkLaunchEnabled: {true | false}

If this resource is set to true, TotalView will auto-launch the TotalView
Debugger Server (tvdsvr) when remote processes are launched

totalview*bulkLaunchString: launch_string

Defines the command that will be used to launch the TotalView Debugger
Server (tvdsvr) when remote processes are created.

totalview*buttonBackgroundColor: color

Sets the button background color to color. Defaults to the background color.

278 TotalView User’s Guide Version 4.1

X Resources

totalview*conditionVariablelnfoWindLocation

totalview*buttonForegroundColor: color
Sets the button foreground color to color. Defaults to the foreground color.
totalview*chaseMouse: {on | off}

If on (default), display dialog boxes at the location of the mouse cursor. If
off, display dialog boxes centered in the upper third of the screen.

Override with: —chase option (overrides off)
—no_chase option (overrides on)

totalview*compilerVars: {true | false}

Alpha Digital UNIX and SGI only. If false (default), TotalView does not show
variables created by the Fortran compiler. If true, TotalView shows variables
created by the Fortran compiler and the variables in the user’s program.

Some Fortran compilers (Digital {90/f77, SGI 7.2 compilers) output debug
information that describes variables that the compiler itself has invented for
purposes such as passing the length of character*(*) variables. By default
TotalView suppresses the display of these compiler generated variables; you
can, however, setting totalview*compilerVars to true tells TotalView to dis-
play these variables. This could be useful if you are looking for a corruption
of a run time descriptor or are writing a compiler.

Override with: —compiler_vars option (overrides false)
—no_compiler_vars option (overrides true)

totalview*compileExpressions: {true | false}

Alpha Digital UNIX and IBM AIX (default true), and MIPS IRIX (default false)
platforms only. If true, TotalView enables compiled expressions. If false,
TotalView disables compiled expressions and interprets them instead.

totalview*conditionVariableInfoWindLocation: =widthxheight+x+y
Specifies placement of the first Condition Variable Information Window.

Default width height X y
columns(75) lines(15) 360 300

Version 4.1 TotalView User's Guide 279

1 1 X Resources
_ totalview*cTypeStrings

totalview*cTypeStrings: {true | false}

If false (default), use TotalView's type string extensions when displaying the
type strings for arrays. If true, use C type string syntax when displaying
arrays.

totalview*dataWindLocation: =widthxheight+x+y
Specifies placement of the first Variable Window.

Default width height X y
columns(72) max(205, lines(15)) -80 320

totalview*displayAssemblerSymbolically: {on | off}

If off (default), display assembler locations as hexadecimal addresses. If on,
display assembler locations as “label+offset.”

totalview*dllignorePrefix: prefix_list

Sets the "DLL Don't Query on Load” prefix list to the space-separated list
of prefixes specified in prefix_list. If "TOTALVIEW* ASKONDLOPEN" ON PAGE 276
is set to true, and the suffix of the library being loaded does not match a suf-
fix on the "DLL Do Query on Load” suffix list, and if one or more of the pre-
fixes in this list match the name of the library being loaded, then TotalView
will not ask you if you would like to stop the process. For more information
and the list of default prefixes by platform, see “Debugging Dynamically Loaded
Libraries” on page 338.

totalview*dlIStopSuffix: suffix_list

Sets the "DLL Do Query on Load” suffix list to the space-separated list of
suffixes specified in suffix_list. If “TOTALVIEW* ASKONDLOPEN" ON PAGE 276 is
set to true, and if one or more of the suffixes in this list match the name of
the library being loaded, then TotalView will ask you if you would like to stop
the process. The suffix_list is empty by default. See “Debugging Dynamically
Loaded Libraries” on page 338.

280 TotalView User’s Guide Version 4.1

Version 4.1

X Resources

totalview*eventLogWindLocation

totalview*DPVMDebugging: {true | false}
Digital UNIX only.

If false (default), disables support for debugging the Digital UNIX implemen-
tation of Parallel Virtual Machine (DPVM) applications. If true, enables sup-
port for debugging DPVM applications.

Override with: —dpvm option (overrides false)
—no_dpvm option (overrides true)

totalview*editorLaunchString: command_string

Default: xterm —e %E +%N %S

Sets the editor launch command string to the specified value. Refer to
“Changing the Editor Launch String” on page 121 for more information on the
format of command_string.

totalview*errorFontForegroundColor: color

Default: red

Sets the color of "E”, “Z", and "?” states to color.
totalview*evalForegroundColor: color

Default: orange

Sets the color of the EVAL icon to color.
totalview*evalWindLocation: =widthxheight+x+y
Specifies placement of the first Expression Evaluation Window.

Default width height X y
columns(83) lines(30) + 2 -1 10

totalview*eventLogWindLocation: =widthxheight+x+y
Specifies placement of the Event Log Window.

Default width height X y
columns(75) lines(20) ~75 -50

TotalView User's Guide

281

1 1 X Resources

totalview*font: fontname

Default: fixed

Specifies the font used by the TotalView debugger. Use the X Windows sup-
plied application xIsfonts to list the names of available fonts.

totalview*foregroundColor: color

Default: black

Sets the general foreground color (that is, the text color) to color.
totalview*frameOffsetX: n

Default: 0

Sets the horizontal placement offset between windows of the same type, as
TotalView places them on the screen. This value is added to the default value
used by TotalView. If you are using TotalView title bars, use the default.

totalview*frameOffsetY: n

Default: 0

Sets the vertical placement offset between windows of the same type, as
TotalView places them on the screen. This value is added to the default value
used by TotalView. If you are using TotalView title bars, use the default.

totalview*globalsWindLocation: =widthxheight+x+y
Specifies placement of the Global Variables Window.
Default width height X y
columns(62) max(205, lines(15)) -80 10
totalview*globalTypenames: {true | false}

If true (default), specifies that TotalView can assume that type names are
globally unique within a program and that all type definitions with the same
name are identical. In C+ +, the standard asserts that this must be true for
standard conforming code.

If this option is true, TotalView attempts to replace an opaque type (struct
foo *p;) declared in one module, with an identically named defined type
(struct foo { ... };) in a different module.

TotalView User’s Guide Version 4.1

Version 4.1

X Resources

totalview*hpfNode

If TotalView has read the symbols for the module containing the non-
opaque type definition, then when displaying variables declared with the
opaque type, TotalView will automatically display the variable using the non-
opaque type definition.

If false, TotalView will not assume that type names are globally unique within
a program. You should specify this option if your code has different defini-
tions of the same named type, since otherwise TotalView is likely to pick the
wrong definition to substitute for an opaque type.

Override with: —global_types option (overrides false)
—-no_global_types option (overrides true)

totalview*grabMouse: {on | off}

If off (default), do not force keyboard input to dialog boxes. If you're running
TotalView with a window manager that is operating in “click-to-type” mode,
you should set this resource to “on” or use the —-grab command-line option.

totalview*helpWindLocation: =widthxheight+x+y
Specifies placement of the help window.
Default width height X y
min(screen_width - 10, columns(84)) min(screen_height - 20, 606) -1 -20
totalview*hpf: {true | false}

If true (default, if HPF debugging has been licensed), enables debugging at
the HPF source level.

Setting this X resource to false, causes TotalView to ignore .stx and .stb files,
and therefore to debug HFP code at the intermediate (Fortran 77) level.

Override with: —hpf option (overrides false)
—no_hpf option (overrides true)

totalview*hpfNode: {true | false}

If false (default), the node on which an HPF distributed array element
resides is not displayed in the Process Window.

The node display can be toggled in each Variable Window using the Toggle
Node Display option in the Process Window menu.

TotalView User's Guide

283

284

1 1 X Resources
_ totalview*inverseVideo

Override with: —hpf_node option (overrides false)
—-no_hpf_node option (overrides true)

totalview*inverseVideo: {true | false}

If true, enables inverse video display. If false (default), disables inverse video
display.

totalview*kccClasses: {true | false}

If set to true, (default) TotalView will convert structure definitions output by
the KCC compiler into classes that show base classes, and virtual base
classes in the same way as other C++ compilers. When set to false, the
debugger will not convert structure definitions output by the KCC compiler
into classes. Virtual bases will show up as pointers, rather than the data.

Unfortunately, the conversion has to be done by textual matching of the
names given to structure members, so can it be confused if you have struc-
ture component names that look to TotalView like KCC processed classes.
However, the conversion is never performed unless TotalView believes that
the code was compiled with KCC, because TotalView has seen one of the tag
strings that KCC outputs, or because the user has asked for the KCC name
demangler to be used. Also all of the recognized structure component
names start with * ", and, according to the C standard, user code should
not contain names with this prefix.

Note that under some circumstances it is not possible to convert the origi-
nal type names because there is no available type definition. For example,
it may not be possible to convert "struct __SO_foo” to "struct foo”, so in
this case the *__SO_foo” type will be shown. This is only a cosmetic prob-
lem. (The " __SO__ " prefix denotes a type definition for the non-virtual com-
ponents of a class with virtual bases).

Since KCC outputs no information on the accessibility of base classes (" pri-
vate”, "protected”, “public”), TotalView is unable to provide this informa-
tion.

totalview*mainHSplit: n

Same as totalview*mainHSplit1.

TotalView User’s Guide Version 4.1

Version 4.1

X Resources

totalview*mainWindLocation

totalview*mainHSplit1: n

Default: (window_height/3)

Controls the height of the Stack Trace, Stack Frame, and Source Code Panes
in the Process Window. n specifies the pixel location of the top of the Source
Code Pane.

totalview*mainHSplit2: n

Controls the height of the Source Code Pane, Thread List, and Action Point
list in the Process Window. n specifies the pixel location of the top of the
Thread List and Action Point List Panes.

Default: A function of window height

TotalView tries to give 5 lines in the Thread List and Action Point list Panes,
and the remainder, at least 20 lines, to the Source Code Pane. If it cannot
give the Source Code Pane at least 20 lines, it shrinks the Thread List and
Action Point List Panes to zero.

totalview*mainVSplit: n
Same as totalview*mainVSplit1.
totalview*mainVSplit1: n

Default: (window_width/2) — 20

Controls the location of the partition between the Stack Trace and Stack
Frame Panes in the Process Window. A value of —1 centers the partition.

totalview*mainVSplit2: n

Default: (window_width/2) — 20

Controls the location of the partition between the Thread List and Action
Point List Panes in the Process Window. A value of —1 centers the partition.

totalview*mainWindLocation: =widthxheight+x+y
Specifies placement of the first main Process Window.

Default width height X y
min(columns(94), screen_width - 5) max(456, lines(45)) 10 -150

TotalView User's Guide

285

1 1 X Resources
_ totalview*menuArrowForegroundColor

totalview*menuArrowForegroundColor: color
Default: blue or green
Sets the menu arrow color to color.
totalview*menuCache: {on | off}
If off (default), disables menu caching. Not all X servers support menu cach-
ing.

NOTE If your X server doesn’t and you have menu caching enabled (on), TotalView
menus appear blank the second and subsequent times you display them.

totalview*messageStateWindLocation: =widthxheight+x+y

Specifies the placement of the first Message State Window.

Default width height X y

columns(72) max(205, lines(15)) -80 330
totalview*modulesWindLocation: =widthxheight+x+y

Specifies the placement of the first Modules Window.

Default width height X y

columns(62) max(205, lines(15)) 75 15
totalview*mouseCursorBackgroundColor: color

Default: white or black

Sets the mouse cursor background (mask) color to color.
totalview*mouseCursorForegroundColor: color

Default: red

Sets the mouse cursor foreground (inner) color to color.
totalview*multForegroundColor: color

Default: purple

Sets the color of MULT icon to color.

286 TotalView User’s Guide Version 4.1

X Resources

totalview*popOnError

totalview*mutexWindLocation: =widthxheight+x+y
Specifies placement of the first Mutex Information Window.
Default width height X y
columns(75) lines(15) 350 300
totalview*overrideRedirect: {on | off}

If off (default), do not create TotalView windows using the override_redirect
attribute. If on, use the override_redirect attribute, which does not give the
X window manager a chance to intercept requests.

totalview*ownTitles: {on | off}

If on (default), place title bars on TotalView windows. If your window man-
ager is a reparenting one (places its own title bars on windows), turn off this
resource.

totalview*patchAreaAddress: address

Allocate the patch space dynamically at the given address. See “Allocating
Patch Space for Compiled Expressions” on page 220.

totalview*patchArealength: length

Set the length of the dynamically allocated patch space to the specified
length. See “Allocating Patch Space for Compiled Expressions” on page 220.

totalview*popAtBreakpoint: {on | off}

If on, sets the Open (or raise) process window at breakpoint checkbox to
be selected by default. If off (default), sets that checkbox to be deselected
by default. See "Handling Signals” on page 41.

Override with: —pop_at_breakpoint option (overrides off)
—no_pop_at_breakpoint option (overrides on)

totalview*popOnError: {on | off}

If on (default), sets the Open (or raise) process window on error checkbox
to be selected by default. If off, sets that checkbox to be deselected by
default. "Handling Signals” on page 41.

Version 4.1 TotalView User's Guide 287

1 1 X Resources
_ totalview*processBarrierStopAll

Override with: —pop_on_error option (overrides off)
—no_pop_on_error option (overrides on)

totalview*processBarrierStopAll: {true | false}

Same as totalview*processBarrierStopAllRelatedProcessesWhen-
BreakpointHit.

totalview*processBarrierStopAllRelatedProcesses\WhenBreakpointHit:
{true | false}

If true (default), the default setting for process barrier breakpoints stops all
related processes. If false, the default setting for process barrier break-
points does not stop all related processes. See “Process Barrier Breakpoints” on
page 206.

totalview*pullRightMenus: {on | off}
If off (default), use walking menus. If on, use pull-right menus.
totalview*pvmDebugging: {true | false}

If false (default), disables support for debugging the ORNL implementation
of Parallel Virtual Machine (PVM) applications. If true, enables support for
debugging PVM applications.

Override with: —pvm option (overrides false)
—nopvm option (overrides true)

totalview*rootWindLocation: =widthxheight+x+y
Specifies placement of the Root Window.

Default width height X y
min(screen_width - 10, columns(60)) max(150, lines(12)) 10 10

totalview*runningFontForegroundColor: color

Default: green

Sets the color of "R”, "S”, *M”, and "I” states to color.

288 TotalView User’s Guide Version 4.1

Version 4.1

X Resources

totalview*serverLaunchString

totalview*scrollLineSpeed: n

Default: 40

Specifies the maximum number of lines per second that TotalView scrolls
when you click on arrows at the top and bottom of the scroll bars. To have
TotalView scroll as fast as possible, set n to 0.

totalview*scrollPageSpeed: n

Default: 5

Specifies the maximum number of pages per second that TotalView scrolls
when you click above or below the elevator box inside the scroll bars. To
have TotalView scroll as fast as possible, set n to 0.

totalview*searchCaseSensitive: {on | off}

If off (default), searching for strings is not case-sensitive. If on, searches are
case- sensitive.

totalview*searchPath: dirl|,dir2,...]

Specifies a list of directories for the debugger to search when looking for
source and object files. This resource serves the same purpose as the Set
Search Directory command in the Process Window (see "Setting Search Paths”
on page 44). If you use multiple lines, place a backslash (\) at the end of each
line, except for the last line.

totalview*serverLaunchEnabled: {true | false}

If true (default), TotalView automatically launches the TotalView Debugger
Server (tvdsvr) when you start to debug a remote process.

totalview*serverLaunchString: command_string

Specifies the command string that TotalView uses to automatically launch
the TotalView Debugger Server (tvdsvr) when you start to debug a remote
process. command_string is executed by /bin/sh. By default, TotalView uses
the rsh command to start the server, but you can use any other command
that can invoke tvdsvr on a remote host. If you have no command available
for invoking a remote process, you can'’t automatically launch the server;
therefore, you should set totalview*serverLaunchEnabled to false.

TotalView User's Guide

289

1 1 X Resources
_ totalview*serverLaunchTimeout

Default: %C %R -n “cd %D && tvdsvr -callback %L \
-set_pw Y%P -verbosity %V*

totalview*serverLaunchTimeout: n
Default: 30

Specifies the number of seconds that TotalView waits to hear back from the
TotalView Debugger Server (tvdsvr) that it launched successfully. The num-
ber of seconds must be between 1 and 3600 (1 hour).

totalview*shareActionPoint: {true | false}
Same as totalview*shareActionPointIinAllIRelatedProcesses.
totalview*shareActionPointInAllRelatedProcesses: {true | false}

If true (default), the default setting for action points will be to share them in
all related processes. If false, the default setting for action points will be to
not share them in all related processes. See “Breakpoints for Multiple Processes”
on page 203.

totalview*signalHandlingMode: action_list

Modifies the way in which TotalView handles signals. An action_list consists
of a list of signal_action descriptions, separated by spaces:
signal_action|signal_action] ...
A signal_action description consists of an action, an equal sign (=), and a
list of signals:
action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard. For
more information on the meaning of each action, refer to *Handling Signals”
on page 41.

Asignal_list is a list of one or more signal specifiers, separated by commas:
signal_specifier|,signal_specifier] ...

A signal_specifier can be a signal name (such as SIGSEGV), a signal number
(such as 11), or a star (*), which specifies all signals. We recommend using
the signal name rather than the number because number assignments vary
across UNIX versions.

290 TotalView User’s Guide Version 4.1

Version 4.1

X Resources

totalview*spellCorrection

The following rules apply when specifying an action_list:
m If you specify an action for a signal in an action_list, TotalView changes the

default action for that signal.

® If you do not specify a signal in the action_list, TotalView does not change
its default action for the signal.

m If you specify a signal that does not exist for the platform, TotalView
ignores it.

m If you specify an action for a signal twice, TotalView uses the last action

specified. In other words, TotalView applies the actions from left to right.
If you need to revert the settings for signal handling to TotalView's built-in
defaults, use the Defaults button in the Set Signal Handling Mode dialog
box.

For example, to set the default action for the SIGTERM signal to Resend,
you specify the following action list:

“Resend=SIGTERM”

As another example, to set the action for SIGSEGV and SIGBUS to Error, the
action for SIGHUP and SIGTERM to Resend, and all remaining signals to
Stop, you specify the following action list:

“Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP SIGTERM"
This action list shows how TotalView applies the actions from left to right.
The action list first sets the action for all signals to Stop. Then, the action

list changes the action for SIGSEGV and SIGBUS from Stop to Error and the
action for SIGHUP and SIGTERM from Stop to Resend.

totalview*sourcePaneTabWidth: »n

Default: 8

Sets the width of the tab character that is displayed in the Source Pane. For
example, if your source file uses a tab width of 4, set n to 4.

totalview*spellCorrection: {verbose | brief | none}

When you use the Function or File... or Variable... commands in the Process
Window or edit a type string in a Variable Window, the debugger checks the
spelling of your entries. By default (verbose), the debugger displays a dialog

TotalView User's Guide

291

1 1 X Resources

box before it corrects spelling. You can set this resource to brief to run the
spelling corrector silently. (The debugger makes the spelling correction with-
out displaying it in a dialog box first.) You can also set this resource to none
to disable the spelling corrector.

totalview*stopAll: {true | false}
Same as totalview*stopAllRelatedProcesses\WhenBreakpointHit.
totalview*stopAllRelatedProcessesWhenBreakpointHit: {true | false}

If true (default), the default setting for breakpoints will stop all related pro-
cesses. If false, the default setting for breakpoints will not stop all related
processes. See “Breakpoints for Multiple Processes” on page 203.

totalview*stopForegroundColor: color

Default: red
Sets the color of STOP and ASM icons to color.

totalview*stoppedFontForegroundColor: color
Default: blue or yellow2
Sets the color of “T” state to color.
totalview*tmpFile1HeaderString: string

The header line used within the first temporary file used when TotalView
does a bulk server launch operation. See “%t1 and %t2" on page 317.

totalview*tmpFile1HostString: string

The host line used within the first temporary file used when TotalView does
a bulk server launch operation. See “%t1 and %t2" on page 317.

totalview*tmpFile1TrailerString: string

The trailer line used within the first temporary file used when TotalView does
a bulk server launch operation. See "%t1 and %t2" on page 317.

totalview*tmpFile2HeaderString: string

The header line used within a temporary file used when TotalView does a
bulk server launch operation. See "%t1 and %t2” on page 317.

TotalView User’s Guide Version 4.1

X Resources

totalview*userThreads

totalview*tmpFile2HostString: string

The host line used within the second temporary file used when TotalView
does a bulk server launch operation. See "%t1 and %t2" on page 317.

totalview*tmpFile2TrailerString: string

The trailer line used within the second temporary file used when TotalView
does a bulk server launch operation. See "%t1 and %t2" on page 317.

totalview*uselnterface: name

Sets the interface name that the server uses when it makes a call back. For
example, on an IBM PS2 machine, the following resource setting sets the
callback to use the hardware option:

totalview*uselnterface:css0

However, TotalView will let you use any legal inet interface name. (You can
obtain a list of the interfaces if you use the netstat -i command.)

totalview*useColor: {true | false}

If true (default), enables TotalView use of color. If false, disables all use of
color and display using monochrome black on white. This option overrides
all other color-related options.

Override with: —color option (overrides false)
—no_color option (overrides true)

totalview*userThreads: {true | false}

If set to true (default), enables handling of user-level (M:N) thread packages
on systems where two-level (kernel and user) thread scheduling is sup-
ported. If set to false, TotalView disables handling of user-level (M:N) thread
packages. Disabling thread support may be useful in situations where you
need to debug kernel-level threads, but in most cases, this option is of little
use on systems where two-level thread scheduling is used.

Override with: —user_threads option (overrides false)
—no_user_threads option (overrides true)

Version 4.1 TotalView User's Guide 293

1 1 X Resources
_ totalview*useTextColor

totalview*useTextColor: {true | false}

If true (default), enables TotalView use of text color. If false, TotalView dis-
ables use of text color.

Override with: —text_color option (overrides false)
—no_text_color option (overrides true)

totalview*useTitleColor: {true | false}

If true (default), enables TotalView use of title color. If false, TotalView dis-
ables use of title color.

Override with: —title_color option (overrides false)
-no_title_color option (overrides true)

totalview*useTransientFor: {on | off}

If off, use "override redirect” windows, which doesn't let you use the window
manager to perform operations, such as raise and lower, on dialog boxes. If
you use an advanced window manager, you can use the on option (default)
to specify that the debugger use “transient-for” type windows, which allow
you to use the window manager to perform operations on dialog boxes. If
you're using an X1 1R4 or more recent server and window manager, you
should use the on option. If you're using Compaq’s window manager, you
should use the off option.

totalview*verbosity: {silent | error | warning | info}

Default: info
Sets the verbosity level of TotalView generated messages.

totalview*visualizerLaunchString: command_string

Default: visualize

Specifies the command string that TotalView uses to launch the visualizer
when you first visualize something. This is a shell command line, so you can
use the shell redirection command to output visualization data-sets to a file
(for example, “cat > your file").

294 TotalView User’s Guide Version 4.1

X Resources

totalview*warnStepThrow

totalview*visualizerLaunchEnabled: {true | false}

If true (default), TotalView automatically launches the visualizer when you
first visualize something. If false, TotalView disables visualization.

totalview*visualizerMaxRank: n

Default: 2

Specifies the default value used in the "Maximum permissible rank” field of
the Visualizer Launch Window dialog box. This field sets the maximum rank
of the array that TotalView will export to the visualizer. TotalView's default
visualizer cannot visualize arrays of rank greater than two, however if you are
using another visualizer, or just dumping binary data, you can set the limit
here.

totalview*warnStepThrow: {true | false}

If set to true (default), and your program throws an exception during a Total-
View single-step operation, you will be asked if you wish to stop the single-
step operation. The process will be left stopped at the C++ run time
library’s “throw” routine. If set to false, then TotalView will not catch C+ +
exception throws during single-step operations, which may cause the sin-

gle-step operation to lose control of the process, and cause it to run away.

Visualizer X Resources

Version 4.1

The TotalView visualizer uses a large number of X resources that are set up
in its application defaults file. The X resources documented are a subset of
those found in the application defaults file as they are the only ones that
may be customized to your preferences. Setting them in your own X
resources file overrides the application defaults file.

The default values of the X resources are listed here shown either in a bold
typeface in a list of alternative values, or separately if there can be a range
of values. They are the settings in the applications defaults file as it is
shipped. Your site administrator can edit this file to set the site defaults,
therefore your site may have different defaults.

TotalView User's Guide

295

1 1 X Resources
_ Visualize*data*pick_message.background

Visualize*data*pick_message.background: color
Default: light yellow

Sets the color of the pick popup window.
Visualize*directory*auto_visualize.set: {1 | 0}

Sets the initial state of the auto-visualize option in the Directory Window. If
set (1), when a new data-set is added to the list, it will be visualized auto-
matically using an appropriate method. If cleared (0), the new data-set will
not be displayed automatically, and you will have to choose a visualization
method for it.

Visualize*directory.width:

width
Visualize*directory.height

height

Sets the initial width and height of the Directory Window.

Default: width=300, height=100
Visualize*graph.width:

Default: width=400, height=400

width
Visualize*graph.height

height
Sets the initial width and height of the Graph Data Window.
Visualize*graph*lines.set: {1 | 0}

Sets the initial state of the lines option in the Graph Window. When set (1),
graphs are drawn with lines connecting the data points.

Visualize*graph*points.set: {1 | 0}

Sets the initial state of the points option in the Graph Window. When set (1),
graphs are drawn with markers on each data point.

296 TotalView User’s Guide Version 4.1

Version 4.1

X Resources

Visualize*surface*xrt3dViewNormalized

Visualize*surface.width: width
Visualize*surface.height: feight

Default: width=400, height=400
Sets the initial width and height of the Surface Data Window.
Visualize*surface*mesh.set: {1 | 0}

Sets the initial state of the mesh option in the Surface Window. When set (1),
the axis grid is projected onto the surface.

Visualize*surface*shade.set: {1 | 0}

Sets the initial state of the shade option in the Surface Window. When set
(1), the surface is shaded.

Visualize*surface*contour.set: {1 | 0}

Sets the initial state of the contour option in the Surface Window. When set
(1), contours are displayed on the surface.

Visualize*surface*zone.set: {1 | 0}

Sets the initial state of the zone option in the Surface Window. When set (1),
the surface is colored according to the value.

Visualize*surface*auto_reduce.set: {1 | 0}

Sets the initial state of the auto-reduce option in the Surface Window. When
set (1), large data-sets are reduced by averaging to speed display.

Visualize*surface*xrt3dZoneMethod: {zonecontours | zonecells}

Specifies how the surface is colored. When set to zonecontours, the surface
is colored according to its contours. When set to zonecells, each cell in the
mesh is colored based on the average value in the cell.

Visualize*surface*xrt3dViewNormalized: {1 | 0}

When set (1), the view of the data-set (before zooming or translation) is max-
imized to fit the window. Interactive rotation when this resource is set will
look “jerky” but will ensure no portion of the display is clipped. When this
resource is cleared (0), dynamic rotation will be smooth, but parts of the dis-
play (for example, axes) may be clipped at some viewing angles.

TotalView User's Guide

297

1 1 X Resources
_ Visualize*surface*xrt3dXMeshFilter

Visualize*surface*xrt3dXMeshFilter: : n
Visualize*surface*xrt3dYMeshFilter: n

Default: 0

Specifies how to display the surface mesh. Every nth mesh line will be dis-
played, where n must be an integer greater than or equal to 0. When set to
0, a value is calculated automatically.

298 TotalView User’s Guide Version 4.1

Chapter 12

TotalView Command Syntax

This chapter summarizes the syntax of the totalview command. For the full syn-
tax, use the man totalview command to view the online version.

Syntax

Synopsis: totalview [filename [corefile]] [options]

Description: The TotalView debugger is a source-level debugger with a
graphic interface (based on the X Window System) and features for debug-
ging distributed programs, multiprocess programs, and multithreaded pro-
grams. You need a workstation or terminal running the X Window System to
use TotalView. TotalView is available on a number of different platforms.

Arguments:

filename Specifies the pathname of the executable being
debugged. This can be an absolute or relative path-
name. The executable must be compiled with debug-
ging symbols turned on, normally the —g compiler
option. Any multiprocess programs that call fork(),
vfork(), or execve() should be linked with the dbfork
library.

corefile Specifies the name of a core file. Specify this argument
in addition to filename when you want to examine a core
file with TotalView:

totalview filename corefile | options |

Version 4.1 TotalView User's Guide 299

1 2 TotalView Command Syntax

Using Options :

If you specify mutually exclusive options on the same

command line (for example, —dynamic and -no_dynamic), the last option
listed is used. Some of these options override TotalView X resources
described in "X Resources” on page 275. If an option contains underscores
(1), you can usually omit the underscores. For example, -nodynamic is the
same as —no_dynamic; similarly —arrowbgcolor and —arrow_bg_color are

the same.

NOTE The option, —Xresource=value, allows you to set the X resource Xresource to
value from the command line. For example, to set totalview*stopAll to false, you
could specify the command line option —stopAll=false. Note that the string
“totalview*" is omitted from the command line. X resource values set from the com-
mand line override settings in your X resource file. For a complete list of X resources,
see Chapter 11 “X Resources” on page 275.

Options

300

-a args

Passes all subsequent arguments (specified by args) to
the program specified by filename. This option must be
the last one on the command line.

—arrow_bg_color color

—arrow_color color

—ask_on_dlopen

Sets the background (outline) color of PC arrow to color.
Default: black

Sets the foreground (inner) color of PC arrow to color.
Default: yellow2

(Default) TotalView will ask you about stopping pro-
cesses that dynamically load a new shared library using
the dlopen or load (AIX only) system calls. See “Debug-
ging Dynamically Loaded Libraries” on page 338.

—no_ask_on_dlopen

TotalView User’s Guide

TotalView will not ask you about stopping processes
that dynamically load a new shared library using the
dlopen or load (AIX only) system calls. See “Debugging
Dynamically Loaded Libraries” on page 338.

Version 4.1

Version 4.1

TotalView Command Syntax

—background color

—bg color

—barrier_color color

—color

Sets the general background color to color.
Default: white

Same as —-background.

Sets the color of the process barrier breakpoint icon.
Default: blue

—barrier_font_color color

—barr_stop_all

Sets the color of the font used to show the H and Hold
indicators for held processes.

Default: blue

(Default) Enables process barrier breakpoints to stop
all related processes.

—no_barr_stop_all

—break_color color

The process barrier breakpoint does not stop all related
processes.

Sets the color of "B” state to color.

Default: orange

—button_bg_color color

Sets the button background color to color.

Default: background color

—button_fg_color color

—chase

—-no_chase

—color

—no_color

Sets the button foreground color to color.
Default: foreground color

(Default) Displays dialog boxes at the mouse pointer.
To display dialog boxes centered in the upper third of
the screen, use —no_chase.

Displays dialog boxes centered in the upper third of
the screen.

(Default) Enables TotalView use of color.

Disables all use color, and display using monochrome
black on white. This option overrides all other color-
related options.

Same as —no_color.

TotalView User's Guide

301

1 2 TotalView Command Syntax
_ —compiler_vars

—compiler_vars Alpha, HP and SGI only. Show variables created by the
Fortran compiler, as well as those in the user’s pro-
gram.

—no_compiler_vars
(Default) Do not show variables created by the Fortran
compiler.

Some Fortran compilers (Compagq f90/f77, HP f90, SGI
7.2 compilers) output debug information which
describes variables that the compiler itself has
invented for purposes such as passing the length of
character*(*) variables. By default, TotalView sup-
presses the display of these compiler generated vari-
ables.

However you can specify the —compiler_vars option or
set the totalview*compilerVars X resource to true to
cause such variables to be displayed. This could be
useful if you are looking for a corruption of a run time
descriptor or are writing a compiler.

—dbfork (Default) Catches the fork(), vfork(), and execve() sys-
tem calls if your executable is linked with the dbfork
library.

—-no_dbfork Does not catch fork(), vfork(), and execve() system
calls even if your executable is linked with the dbfork
library.

—debug_file consoleoutputfile
Redirects TotalView console output to a file named con-
soleoutputfile.

Default: All TotalView console output is written to
stderr.

302 TotalView User’s Guide Version 4.1

Version 4.1

—demangler=compile

—display displayname

—dpvm

-no_dpvm

—dump_core
—no_dumpcore

—dynamic

TotalView Command Syntax

—dynamic

’
Overrides the C+ + demangler and mangler TotalView
uses by default. The following table lists override
options.

TasLE 39: Demangling Command Line Options

Option Meaning
—demangler=cset IBM XIC C++
—demangler=dec Compagq Tru64 C++
—demangler=gnu GNU C++
—demangler=hpux HP C++

—demangler=irix SGI IRIX C++
—demangler=Kkai KAI KCC C++ 3.2 or greater
—demangler=spro SunPro C++ 4.0 or greater
—demangler=sun Sun CFRONT C++

—demangler=usoft Microsoft C++

Sets the name of the X Windows display to displayname.
For example, —display vinnie:0.0 will display TotalView
on the machine named “vinnie.”

Default: To the value of the DISPLAY environment vari-
able.

Compagq Tru64 UNIX only: Enables support for debug-
ging the Compaq Tru64 UNIX implementation of Paral-
lel Virtual Machine (PVM) applications.

Compaq Tru64 UNIX only: (Default) Disables support
for debugging the Compaq Tru64 UNIX implementa-
tion of PVM applications.

Allows TotalView to dump a core file when it gets an
internal error. Useful for debugging TotalView itself.

(Default) Does not allow TotalView to dump a core file
when it gets an internal error.

(Default) Loads symbols from shared libraries. This
option is available only on platforms that support
shared libraries.

TotalView User's Guide

303

304

1 2 TotalView Command Syntax
_ —no_dynamic

—-no_dynamic

—error_color color

—eval_color color

—ext extension

—font fontname

—fn fontname

—foreground color

—fg color

—global_types

TotalView User’s Guide

Does not load symbols from shared libraries when
reading dynamically linked executables. Setting this
option can cause the dbfork library to fail because
TotalView might not find the fork(), vfork(), and
execve() system calls.

Sets the color of "E”, “Z", and “?” states to color.
Default: red

Sets the color of the EVAL action point signs to color.
Default: orange

Specifies that files with the suffix extension are prepro-
cessor input files. TotalView already has built-in exten-
sions for C++ (.C, .cpp, .cc, .cxx), Fortran (.F), lex (.1,
.lex), and yacc (.y) files.

Specifies the font to be used by TotalView.

Default: fixed

Same as -font.

Sets the general foreground color (i.e., the text color)
to color.

Default: black

Same as —foreground.

(Default) Specifies that TotalView can assume that type
names are globally unique within a program and that
all type definitions with the same name are identical. In
C++, the standard asserts that this must be true for
standard conforming code.

If this option is set, TotalView will attempt to replace an
opaque type (struct foo *p;) declared in one module,
with an identically named defined type in a different
module.

If TotalView has read the symbols for the module con-
taining the non-opaque type definition, then when dis-
playing variables declared with the opaque type,
TotalView will automatically display the variable using
the non-opaque type definition.

Version 4.1

TotalView Command Syntax

—icc

—-no_global_types Specifies that TotalView cannot assume that type
names are globally unique within a program. You
should specify this option if your code has multiple dif-
ferent definitions of the same named type, since oth-
erwise TotalView is likely to pick the wrong definition to
substitute for an opaque type.

-grab Forces all keyboard input to go to an open dialog box.
Use this option if your window manager uses “click-to-
type” mode.

—-no_grab (Default) Does not force keyboard input to an open
dialog box.

—grab_server (Default) TotalView will grab the X server when posting
menus.

—-no_grab_server
TotalView will not grab the X server when posting

menus. Useful for taking screen shots of TotalView's
menus.

—hpf (Default) Enables debugging HPF code at the source
level.

—-no_hpf Disables debugging HPF source code at the source
level.

—hpf_node Enables display of node on which HPF distributed
array element resides in the Process Window.

-no_hpf_node (Default) Disables display of node on which HPF dis-
tributed array element resides in the Process Window.

—ignore_control_c Ignores Ctrl-C and prevents you from terminating the
TotalView process from an xterm window, which is use-
ful when your program catches the Ctrl-C signal (SIG-
INT).

—icc Same as —ignore_control_c.

—no_ignore_control_c
(Default) Catches Ctrl-C and terminates your TotalView
debugging session. To override this, use
—ignore_control_c.

—nicc Same as —no_ignore_control_c.

Version 4.1 TotalView User's Guide 305

TotalView Command Syntax
—iv

—iv Turns inverse video on.
-no_iv (Default) Turns inverse video off.
—kcc_classes (Default) Convert structure definitions output by the

KCC compiler into classes that show base classes, and
virtual base classes in the same way as other C++
compilers. See the description of the X resource
“TOTALVIEW*KCCCLASSES” on page 284 for a description
of the conversion performed by TotalView.

—-no_kcc_classes
Do not convert structure definitions output by the KCC
compiler into classes. Virtual bases will show up as
pointers, rather than the data.

-lb (Default) Loads action points automatically from the
filename. TVD.breakpoints file, providing the file exists.

-nlb Does not load action points automatically from an
action points file.

-mc Turns on menu caching. Use this option if your X server
supports menu caching. If menus appear blank the
second and subsequent times you display them, your
X server does not support menu caching.

-nmc (Default) Turns off menu caching.

—menu_arrow_color color
Sets the menu arrow color to color.

Default: blue or green

-message_queue (Default) Enable the display of MPI message queues
when debugging an MPI program.

-mqd Same as -message_queue.

-no_message_queue
Disable the display of MPI message queues when

debugging an MPI program. This might be useful if a
store corruption is overwriting the message queues
and causing TotalView to become confused.

-no_maqd Same as —-no_message_queue.

306 TotalView User’s Guide Version 4.1

Version 4.1

TotalView Command Syntax

—pop_on_error

—mouse_bg_color color

Sets the mouse cursor background (mask) color to
color.

Default: white or black

—mouse_fg_color color

—mult_color color

—parallel

—-no_parallel

Sets the mouse cursor foreground (inner) color to color.
Default: red

Sets the color of MULT action point sign to color.
Default: purple

(Default) Enable handling of parallel program runtime
libraries such as MPI, PE and HPF.

Disable handling of parallel program runtime libraries
such as MPI, PE and HPF. This is useful for debugging
parallel programs as if they were single process pro-
grams.

—patch_area_base address

Allocates the patch space dynamically at the given
address. See “Allocating Patch Space for Compiled Expres-
sions” on page 220.

—patch_area_length length

Set the length of the dynamically allocated patch
space to the specified length. See “Allocating Patch Space
for Compiled Expressions” on page 220.

—pop_at_breakpoint

Sets the Open (or raise) process window at
breakpoint checkbox to be selected by default. See
“Handling Signals” on page 41.

—no_pop_at_breakpoint

—pop_on_error

(Default) Sets the Open (or raise) process window at
breakpoint checkbox to be deselected by default.

(Default) Sets the Open (or raise) process window on
error checkbox to be selected by default. See "Han-
dling Signals” on page 41.

—-no_pop_on_error

Sets the Open (or raise) process window on error
checkbox to be deselected by default.

TotalView User's Guide

307

1 2 TotalView Command Syntax

—pr Use pull-right menus.
-npr (Default) Use walking menus instead of pull-right
menus.
—pvm Enables support for debugging the ORNL implementa-

tion of Parallel Virtual Machine (PVM) applications.

-no_pvm (Default) Disables support for debugging the ORNL
implementation of PVM applications.

—remote fostname[:portnumber]
Debugs an executable that is not running on the same
machine as TotalView. For hostname, you can specify a
TCP/IP hostname, such as vinnie, or a TCP/IP address,
such as 128.89.0.16. Optionally, you can specify a
TCP/IP port number for portnumber, such as :4174.
When you specify a port number, you disable the auto-
launch feature. For more information on the auto-
launch feature, see “Single Process Server Launch Com-
mand” on page 59.

—r hostnamel[:portnumber]
Same as —-remote.

—running_color color
Sets the color of “R”, "S”, "M", and "I” states to color.

Default: green

-s pathname Specifies the pathname of a start-up file that will be
loaded and executed. This pathname can either be an
absolute or relative name. You can find information on
the contents of this start-up file in the CLI User’s Guide.

—sb Saves action points automatically to an action points
file when you exit TotalView. The file is named file-
name.TVD.breakpoints.

-nsb (Default) Does not save action points automatically to
an action points file when you exit.

—serial device[:options]
Debugs an executable that is not running on the same
machine as TotalView. For device, specify the device
name of a serial line, such as /dev/com1. Currently, the
only option you are allowed to specify is the baud rate,

308 TotalView User’s Guide Version 4.1

TotalView Command Syntax

—user_threads

which defaults to 38400. For more information on
debugging over a serial line, see “"Debugging Over a Serial
Line” on page 65.

-signal_handling_mode “action_list"
Modifies the way in which TotalView handles signals.
You must enclose the action_list string in quotation
marks to protect it from the shell. Refer to “TOTAL-
VIEW *SIGNALHANDLINGMODE” on page 290 for a descrip-
tion of the action_list argument.

—shm “action_list" Same as —signal_handling_mode.

-stop_all (Default) Sets the Stop All Related Processes when
Breakpoint Hit checkbox to be selected by default. To
override this option use —no_stop_all. See “Breakpoints
for Multiple Processes” on page 203.

—-no_stop_all Sets the Stop All Related Processes when Breakpoint
Hit checkbox to be deselected by default.

—stop_color color Sets the color of STOP and ASM action point signs to
color.

Default: red

—stopped_color color
Sets the color of “T” state to color.

Default: blue or yellow2

—text_color (Default) Turns text color use on.
-no_text_color Turns text color use off.
—title_color (Default) Turns title color use on.
—tc Same as —title_color.
-no_title_color Turns title color use off.
-no_tc Same as —no_title_color.

—user_threads (Default) Enable handling of user-level (M:N) thread
packages on systems where two-level (kernel and user)
thread scheduling is supported.

—no_user_threads
Disable handling of user-level (M:N) thread packages.
This option may be useful in situations where you need
to debug kernel-level threads, but in most cases, this

Version 4.1 TotalView User's Guide 309

1 2 TotalView Command Syntax
_ —verbosity level

option is of little use on systems where two-level
thread scheduling is used.

-verbosity level Sets the verbosity level of TotalView generated mes-
sages to level, which may be one of silent, error,
warning, or info.

Default: info

310 TotalView User’s Guide Version 4.1

Chapter 13

TotalView :
Debugger Server Command Syntax .

This chapter summarizes the syntax of the TotalView Debugger Server command,
tvdsvr, which is used for remote debugging. For more information on remote
debugging, refer to “Starting the Debugger Server for Remote Debugging” on
page 55.

The tvdsvr Command and its Options

Version 4.1

Synopsis : tvdsvr {-server | —callback fiostname:port | —serial device}
[other options)

Description : The tvdsvr debugger server allows TotalView to control
and debug a program on a remote machine. To accomplish this, the tvdsvr
program must run on the remote machine, and it must have access to the
executables to be debugged. These executables must have the same abso-
lute pathname as the executable that TotalView is debugging, or the PATH
environment variable for tvdsvr must include the directories containing the
executables.

You must specify either the —server, —callback, or —serial option with the
tvdsvr command. By default, the TotalView debugger automatically
launches tvdsvr (known as the auto-launch feature) with the —callback
option, and the server establishes a connection with TotalView.

TotalView User's Guide

311

312

1 3 TotalView Debugger Server Command Syntax
_ —callback hostname:port

If you prefer not to use the auto-launch feature, you can start tvdsvr man-
ually and specify the —server option. Be sure to note the password that
tvdsvr prints out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr
automatically generates a password that is used when establishing connec-
tions. If desired, you can use the —set_pw option to set a specific password.

To connect to the tvdsvr from TotalView, you use the New Program Window
and must specify the hostname and TCP/IP port number, hostname:portnumber
on which tvdsvr is running. Then, TotalView prompts you for the password
for tvdsvr.

Options: The following options determine the port number and pass-
word necessary for TotalView to connect with tvdsvr.

—callback hostname:port
(Auto-launch feature only) Immediately establishes a
connection with a TotalView process running on fiost-
name and listening on port, where hostname is either a
hostname or TCP/IP address. If tvdsvr cannot connect
with TotalView, it exits.

If you use a —port, —search_port, or —server options
with this option, tvdsvr ignores them.

—callback_host hostname
Names the host upon which the callback is made. fiost-

name indicates the machine upon which TotalView is
running. This option is most often used with a bulk
launch.

—callback_ports port-list
Names the ports on the host machines that are used
for callbacks. The port-list argument contains a comma-
separated list of the host names and TCP/IP port num-
bers (hostname:port,hostname:port...) on which TotalView
is listening for connections from tvdsvr. This option is
most often used with a bulk launch.

TotalView User’s Guide Version 4.1

TotalView Debugger Server Command Syntax

—search_port

—debug_file consoleoutputfile

—dpvm

—port number

—pvm

—search_port

Version 4.1

Redirects TotalView Debugger Server console output to
a file named consoleoutputfile.

Default: All console output is written to stderr.

Uses the Compaq Tru64 UNIX implementation of the
Parallel Virtual Machine (DPVM) library process as its
input channel and registers itself as the DPVM tasker.

NOTE This option is not intended for users launching
tvdsvr manually. When you enable DPVM support within
TotalView, TotalView automatically uses this option when
it launches tvdsvr.

Sets the TCP/IP port number on which tvdsvr should
communicate with totalview. If this TCP/IP port num-
ber is busy, tvdsvr does not select an alternate port
number (that is, it communicates with nothing) unless
you also specify —search_port.

Default: 4142

Uses the ORNL implementation of the Parallel Virtual
Machine (PVM) library process as its input channel and
registers itself as the ORNL PVM tasker.

NOTE This option is not intended for users launching
tvdsvr manually. When you enable PVM support within
TotalView, TotalView automatically uses this option when
it launches tvdsvr.

Searches for an available TCP/IP port number, begin-
ning with the default port (4142) or the port set with
the —port option and continuing until one is found.
When the port number is set, tvdsvr displays the cho-
sen port number with the following message:

port = number

Be sure that you remember this port number as you will
need it when you are connecting to this server from
TotalView.

TotalView User's Guide

313

314

1 3 TotalView Debugger Server Command Syntax
_ —serial device[:options]

—serial device[:options]

—-server

Waits for a serial line connection from TotalView. For
device, specify the device name of a serial line, such as
/dev/com1. The only option you can specify is the baud
rate, which defaults to 38400. For more information
on debugging over a serial line, see "Debugging Over a
Serial Line” on page 65.

Listens for and accepts network connections on port
4142 (default).

Using —server can be a security problem. Conse-
quently, you must explicitly enable this feature by plac-
ing an empty file named tvdsvr.conf in your /etc
directory. This file must be owned by user ID 0 (root).
When the tvdsvr encounters this option, it checks if
this file exists. This file’s contents are ignored.

You can use a different port by specifying either —port
or —search_port. To stop tvdsvr from listening and
accepting network connections, you must terminate it
by pressing Ctrl-C in the terminal window from which it
was started or by using the kill command.

—set_pw hexnumhigh:hexnumlow

TotalView User’s Guide

Sets the password to the 64-bit number specified by
the two 32-bit numbers hexnumhigh and hexnumlow.
When a connection is established between tvdsvr and
TotalView, the 64-bit password passed by TotalView
must match the password set with this option. When
the password is set, tvdsvr displays the selected num-
ber in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connections
by other users.

NOTE If necessary, you can disable password checking by
specifying the —set_pw 0:0 option with the tvdsvr com-
mand. Disabling password checking is dangerous; it allows
anyone to connect to your server and start programs,
including shell commands, using your UID. Therefore, we
do not recommend disabling password checking.

Version 4.1

TotalView Debugger Server Command Syntax

%C

-set_pws password-list

-verbosity level

Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection
with it. The argument to this command is a comma-
separated list of passwords that TotalView automati-
cally generates. This option is most often used with a
bulk launch.

Sets the verbosity level of TotalView Debugger Server
generated messages to level, which may be one of
silent, error, warning, or info.

Default: info

-working_directory directory

Makes directory the directory to which TotalView will be
connected.

Note that the command assumes that the host
machine and the target machine mount identical file-
systems. That is, the pathname of the directory to
which TotalView is connected must be identical on
both the host and target machines.

After performing this operation, the TotalView Debug-
ger Server is started.

Replacement Characters

Version 4.1

When placing a tvdsvr command within a Server Launch or Bulk Launch
Window, you will need to use special replacement characters. When your
program needs to launch a remote process, TotalView replaces these char-
acters within the command with what it represents. Here are the replace-

ment characters:

%C

Is replaced by the name of the server launch command
being used. On most platforms, this is rsh. On HP this
command is remsh. If the TVDSVRLAUNCHCMD envi-
ronment variable exists, TotalView will use its value
instead of its platform-specific value.

TotalView User's Guide

315

1 3 TotalView Debugger Server Command Syntax

%D Is replaced by the absolute pathname of the directory
to which TotalView will be connected.

%H Expands to the hostname of the machine upon which
TotalView is running. (These replacement characters
are most often used in bulk server launch commands.
However, it can be used in a regular server launch and
within a tvdsvr command contained within a tempo-
rary file.)

%L If TotalView is launching one process, this is replaced
by the host name and TCP/IP port number (fiost-
name:port) on which TotalView is listening for connec-
tions from tvdsvr.

If a bulk launch is being performed, TotalView replaces
this with a comma-separated list of the host names
and TCP/IP port numbers (hostname:port,hostname:port...)
on which TotalView is listening for connections from

tvdsvr.

%N Is replaced by the number of servers that will be
launched. This is only used in a bulk server launch
command.

%P If TotalView is launching one process, this is replaced
by the password that TotalView automatically gener-
ated.

If a bulk launch is being performed, TotalView replaces
this with a command separated list of 64-bit pass-

words

%R Is replaced by the host name of the remote machine
that was specified in the New Program Window com-
mand.

%S If TotalView is launching one process, this is replaced

by the port number on the machine upon which the
debugger is running.

If a bulk server launch is being performed, TotalView
replaces this with a comma-separated list of port num-
bers.

316 TotalView User’s Guide Version 4.1

Version 4.1

%t1 and %t2

%V

TotalView Debugger Server Command Syntax

%V

Is replaced by files that TotalView creates containing
information it generates. This is only available in a bulk
launch.

These temporary files have the following structure:

(1) An optional header line containing initialization
commands required by your system.

(2) One line for each host being connected to, contain-
ing host-specific information.

(3) An optional trailer line containing information
needed by your system to terminate the temporary file.

The bulk server launch dialog box allows you to define
templates for the actions performed by temporary
files. These files will use these replacement characters.
You can only use the %N, %t1, and %t2 replacement
characters within header and trailer lines of temporary
files. The %L, %P, and %S can be used in header or
trailer lines or within a host line defining the command
that initiates a single process server launch.

The templates for temporary files can also be set using
X Resources. These resources, described in Chapter
11, all begin with “totalview*tmpFile.”

Is replaced by the current TotalView verbosity setting.

TotalView User's Guide

317

1 3 TotalView Debugger Server Command Syntax

318 TotalView User’s Guide Version 4.1

Appendix A

Compilers and Environments

This appendix describes the compilers and parallel runtime environments that
can be used with this release of TotalView. You must refer to the TotalView release
notes included in the TotalView distribution for information on the specific com-
piler and runtime environment supported by TotalView.

For information on supported operating systems, please refer to Appendix B
“Operating Systems"” on page 329.
This appendix includes:

® Compiling with exception data on Compaq Tru64 UNIX
B Linking with the dbfork library

Compiling with Debugging Symbols
You need to compile programs with the —g option and possibly other com-
piler options so that debugging symbols are included. This section shows
the specific compiler commands to use for each compiler that TotalView
supports.

NOTE Please refer to the release notes in your TotalView distribution for the latest
information about supported versions of the compilers and parallel runtime environ-
ments listed here.

Version 4.1 TotalView User's Guide 319

Compilers and Environments

AIX on RS/6000 Systems

Table 40 lists the procedures to compile programs on IBM RS/6000 systems

running AIX.

TasLe 40: Compiling with Debugging Symbols on AIX

Compiler Compiler Command Line
GCCEGCSC gcc —g —C program.c

GCCEGCS C++ g+ + —g —C program.cxx

IBM xlc C xlc —g —c program.c

IBMXIC C++ xIC —g —c program.cxx

IBM xIf Fortran 77 xIf —g —c program.f

IBM xIf90 Fortran 90 xIf90 —g —c program.f90

KAI C KCC +K0 —gnofullpath —c program.c
KAI C++ KCC +K0 —gnofullpath —c program.cxx

KAI Guide C (OpenMP) guidec -g +KO program.c

KAI Guide C++ (OpenMP) guidec -g +KO program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-comp=i program.f
Portland Group HPF pghpf —g -Mtv —c program.hpf

When compiling with KCC, you must specify the —gnofullpath option; KCC
is a preprocessor that passes its output to the IBM xlc C compiler. It will dis-
card #line directives necessary for source level debugging if —qgfullpath is
specified. We also recommend that you use the +K0 option and not the —g
option.

When compiling with guidef77, the -WG,-comp=i option may not be
required on all versions because -g can imply these options.

When compiling Fortran programs using the C preprocessor, pass the —d
option to the compiler driver. For example: xIf -d —g —c program.F

When compiling with any of the IBM xl compilers, if your program will be
moved from its creation directory, or you do not want to set the search
directory path during debugging, use the —gfullpath compiler option. For
example:

xIf —gfullpath —g —c program.f

320 TotalView User’s Guide Version 4.1

Version 4.1

Compilers and Environments

Compaq Tru64 UNIX

Table 41 lists the procedures to compile programs on Compaq Tru64 UNIX.

Tase 41: Compiling with Debugging Symbols on Compaqg Tru64 UNIX
Compiler Compiler Command Line

Compaq Tru64 UNIX C CC —g —C program.c

Compagq Tru64 UNIX C+ + CXX —g —C program.cxx

Compaq Tru64 UNIX Fortran 77 {77 —g —c program.f

Compaq Tru64 UNIX Fortran 90 90 —g —c program.f90

GCCEGCSC gcc —g —c program.c

GCCEGCS C++ g++ —g —C program.cxx

KAI C KCC +KO0 —c program.c

KAI C++ KCC +KO0 —c program.cxx

KAI Guide C (OpenMP) guidec -g +KO program.c

KAI Guide C++ (OpenMP) guidec -g +KO program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-comp=i program.f

When compiling with KCC for debugging, we recommend that you use the
+KO0 option and not the —g option. Also, the -WG,-comp=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

HP-UX

Table 42 lists the procedures to compile programs on HP-UX.

TasLe 42: Compiling with Debugging Symbols on HP-UX

Compiler Compiler Command Line
HP ANSI C CC —g —C program.c

HP C++ aCC —g —c program.cxx
HP Fortran 90 f90 —g —c program.f90
KAI C KCC +KO0 —c program.c
KAI C++ KCC +KO0 —c program.cxx
KAI Guide C (OpenMP) guidec -g +KO program.c

TotalView User's Guide

321

Compilers and Environments

TasLe 42: Compiling with Debugging Symbols on HP-UX (cont.)

Compiler Compiler Command Line
KAI Guide C++ (OpenMP) guidec -g +KO program.cxx
KAI Guide F77 (OpenMP) guidef77 -g -WG,-comp=i program.f

When compiling with KCC for debugging, we recommend that you use the
+KO0 option and not the —g option. Also, the -WG,-comp=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

IRIX on SGI MIPS Systems

Table 43 lists the procedures to compile programs on SGI MIPS systems
running IRIX.

TasLe 43: Compiling with Debugging Symbols on IRIX-MIPS

Compiler Compiler Command Line
GCCEGCSC gcc —g —C program.c
GCCEGCS C++ gCcc —g —C program.cxx
KAI C KCC +KO0 —c program.c
KAI C++ KCC +KO0 —c program.cxx
KAI Guide C (OpenMP) guidec -g +KO0 program.c

KAI Guide C++ (OpenMP) guidec -g +KO program.cxx
KAI Guide F77 (OpenMP) guidef77 -g -WG,-comp=i program.f

Portland Group HPF pghpf —g —-64 —-Mtv —c program.hpf
SGI MIPSpro 90 f90 —n32 —g —c program.f90
f90 —64 —g —c program.f90
SGI MIPSpro C cc—-n32 —g —c program.c
cc —64 —g —c program.c
SGI MIPSpro C+ + CC —-n32 —g —c program.cxx
CC -64 —g —c program.cxx
SGI MIPSpro77 f77 -n32 —g —c program.f

f77 —64 —g —c program.f

322 TotalView User’s Guide Version 4.1

Compilers and Environments

Compiling with —n32 or —64 is supported. TotalView does not support com-
piling with —32, which is the default for some compilers. You must specify
either -n32 or —64.

When compiling with KCC for debugging, we recommend that you use the
+KO0 option and not the —g option. Also, the -WG,-comp=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

You must compiler your programs with the pghpf —-64 compiler option; on
SGI IRIX, TotalView can debug 64-bit executables only.

SunOS 5 on SPARC

Table 44 lists the procedures to compile programs on SunOS 5 SPARC.
TasLe 44: Compiling with Debugging Symbols on SunOS 5

Compiler Compiler Command Line
Apogee C apcc —g —c program.c

Apogee C++ apCc —g —C program.cxx
GCCEGCSC gcc —g —C program.c
GCCEGCS C++ g++ —g —C program.cxx

KAI C KCC +KO0 —c program.c

KAI C++ KCC +KO0 —c program.cxx

KAI Guide C (OpenMP) guidec -g +KO program.c

KAI Guide C++ (OpenMP) guidec -g +KO program.cxx
KAI Guide F77 (OpenMP) guidef77 -g -WG,-comp=i program.f
Portland Group HPF pghpf —g —Mtv —c program.hpf
SunPro/WorkShop C CC —g —C program.c
SunPro/WorkShop C+ + CC —g —c program.cxx
SunPro/WorkShop Fortran 77 77 —g —c program.f

WorkShop Fortran 90 90 —g —c program.f90

When compiling with KCC for debugging, we recommend that you use the
+KO0 option and not the —g option. Also, the -WG,-comp=i option to the

Version 4.1 TotalView User's Guide 323

A Compilers and Environments
_ Using Exception Data on Compaq Tru64 UNIX

guidef77 command may not be required on all versions because -g can
imply these options.

Using Exception Data on Compaq Tru64 UNIX

If you receive the following error message when you load an executable into
TotalView, you may need to compile your program so that exception data is
included:

“Cannot find exception information. Stack backtraces may not be cor-
rect.”

To provide a complete stack backtrace in all situations, TotalView needs the
exception data to be included in the compiled executable. To compile with
exception data, you need to use the following options:

cc -WI,—u, fpdata_size program.c

where:

-wi Passes the arguments that follow to another compila-
tion phase (-W), which in this case is the linker (). Each
argument is separated by a comma (,).

-u Causes the linker to mark the next argument
(_fpdata_size) as undefined.

_fpdata_size Marks the fpdata_size variable as undefined, which

forces the exception data into the executable.

Compiling with exception data increases the size of your executable slightly.
If you choose not to compile with exception data, TotalView can provide
correct stack backtraces in most situations, but not in all situations.

Linking with the dbfork Library

If your program uses the fork() and execve() system calls, and you want to
debug the child processes, you need to link programs with the dbfork
library.

324 TotalView User’s Guide Version 4.1

Version 4.1

Compilers and Environments

Linking with the dbfork Library

AIX on RS/6000 Systems

Add either the -dbfork or -ldbfork_64 argument to the command that you
use to link your programs. If you are compiling 32-bit code, use the following
arguments:

m /usr/totalview/lib/libdbfork.a —bkeepfile:/usr/totalview/lib/libdbfork.a
m —L/usr/totalview/lib —Idbfork —bkeepfile:/usr/totalview/lib/libdbfork.a

For example:

CC —0 program program.c \
—L/usr/totalview/lib —ldbfork \
—bkeepfile:/usr/cotalview/lib/libdbfork. a

If you are compiling 64-bit code, use the following arguments:

B /usr/totalview/lib/libdbfork_64.a\
—bkeepfile:/usr/totalview/lib/libdbfork.a

B —|/usr/totalview/lib —Idbfork_64 \
—bkeepfile:/usr/totalview/lib/libdbfork.a

For example:

CC -0 program program.c \
—L/usr/totalview/lib —ldbfork \
—bkeepfile:/usr/cotalview/lib/libdbfork.a
When you use gcc or g+ +, use the -WI,~bkeepfile option instead of using
—bkeepfile, which will pass the same option to the binder. For example:

gcc —o program program.c —L/usr/totalview/lib —Idbfork \
-WI,—bkeepfile:/usr/totalview/lib/libdbfork.a

Linking C++ Programs with dbfork

The binder option —bkeepfile currently cannot be used with the IBM xIC
C+ + compiler. The compiler passes all binder options to an additional pass
called munch, which cannot handle the —bkeepfile option.

To work around this problem, we have provided the C++ header file
libdbfork.h. You must include this file somewhere in your C+ + program, in
order to force the components of the dbfork library to be kept in your exe-
cutable. The file libdbfork.h is included only with the RS/6000 version of
TotalView. This means that if you are creating a program that will run on

TotalView User's Guide

325

A Compilers and Environments
_ Linking with the dbfork Library

more than one platform, you should place the include within an #ifdef
statement. For example:

#ifdef AIX

#include “/usr/totalview/lib/libdbfork.h”

#endif

int main (int argc, char *argvll)

{

}

In this case, you would not use the -bkkepfile option and would instead link
your program using one of the following options:

B /usr/totalview/lib/libdbfork.a
B —|/usr/totalview/lib —Idbfork

Compaq Tru64 UNIX

Add one of the following arguments to the command that you use to link
your programs:

m /opt/totalview/lib/libdbfork.a
B —|/opt/totalview/lib —ldbfork
For example:
cc —o program program.c —L/opt/cotalview/lib —Idbfork

As an alternative, you can set the LD LIBRARY PATH environment variable
and omit the —L option on the command line:

setenv LD _LIBRARY PATH /opt/totalview/lib

HP-UX

Add either the -Idbfork or -ldbfork_64 argument to the command that you
use to link your programs. If you are compiling 32-bit code, use one of the
following arguments:

m /opt/totalview/lib/libdbfork.a

B —|/opt/totalview/lib —ldbfork

326 TotalView User’s Guide Version 4.1

Version 4.1

Compilers and Environments

Linking with the dbfork Library

For example:

cc —-n32 -0 program program.c\
—L/opt/totalview/lib —Idbfark

If you are compiling 64-bit code, use the following arguments:

B /opt/totalview/lib/libdbfork_64.a
B —|/opt/totalview/lib —Idbfork_64

For example:

cc -64 -o program program.c
—L/opt/totalview/lib —ldbfork 64

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the —L command line option. For example:

setenv LD _LIBRARY PATH /opt/totalview/lib

SunOS 5 SPARC

Add one of the following arguments to the command that you use to link
your programs:

m /opt/totalview/lib/libdbfork.a
B —|/opt/totalview/lib —ldbfork

For example:

cc —0 program program. c —L/opt/totalview/lib \
—ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the —L option on the command line:

setenv LD _LIBRARY PATH /opt/totalview/lib

IRIX6-MIPS

Add one of the following arguments to the command that you use to link
your programs.

If you are compiling your code with —n32, use the following arguments:

B /opt/totalview/lib/libdbfork_n32.a
B —L/opt/totalview/lib —Idbfork n32

TotalView User's Guide

327

A Compilers and Environments
_ Linking with the dbfork Library

For example:

cc —-n32 -0 program program.c\
—L/opt/totalview/lib —ldbfork n32

If you are compiling your code with —64, use the following arguments:

B /opt/totalview/lib/libdbfork.a_n64.a
B —|/opt/totalview/lib —Idbfork_n64

For example:

cc -64 -0 program program.c
—L/opt/totalview/lib —Idbfork_n64

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the —L option on the command line:

setenv LD _LIBRARY_ PATH /opt/totalview/lib

328 TotalView User’s Guide Version 4.1

Appendix B

Operating Systems

This appendix describes the operating system features that can be used with
TotalView. This appendix includes the following topics:

m Supported versions

B Mounting the /proc file system (Compaq Tru64 UNIX, IRIX, and SunOS 5
only)

Swap space

Shared libraries

Remapping keys (Sun keyboards only)

Capabilities and characteristics

Expression system support

Supported Operating Systems

Version 4.1

For a complete list of hardware and software requirements including re-

quired OS patches and restrictions, see the TotalView release notes in your

software distribution. This version of TotalView supports the following oper-

ating system versions:

B Compagq Alpha workstations running Compaq Tru64 UNIX versions V4.0B,
V4.0C, V4.0D, V4.0E, V4.0F, and V5.0. All versions require patches See

“Compaq UNIX Patch Procedures” in the TotalView Release Notes for
instructions.

m HP PA-RISC 1.1 or 2.0 systems running HP-UX Version 11.0
B [BM RS/6000 and SP systems running AIX versions 4.2, 4.3, or 4.3.1

B Sun Sparc SunOS 5 (Solaris 2.x) systems running SunOS versions 5.5,
5.5.1, or 5.6. (Solaris 2.5, 2.5.1, or 2.6)

TotalView User's Guide

329

Operating Systems
“ Mounting the /proc File System

B SGIIRIX 6.2, 6.3, 6.4, or 6.5 on any MIPS R4000, R4400, R4600, R5000,
R8000, or R10000 processor-based systems

B QSW CS-2 based on Sparc Solaris 2.5.1 or 2.6

NOTE TotalView on QSW CS-2 is nearly identical to TotalView on Sun Solaris 2.x sys-
tems.

Mounting the /proc File System

Compaq Tru64 UNIX, SunOS 5, and IRIX

To debug programs on Compaq Tru64 UNIX, SunOS 5, and IRIX with Total-
View, you need to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file sys-
tem might not be mounted:

B job _t::launch, creating process: process not found
m Error launching process while trying to read dynamic symbols

m Creating Process... Process not found
Clearing Thrown Flag
Operation Attempted on an unbound d_process object

To determine whether the /proc file system is mounted, enter the appropri-
ate command from the following table.
Table 45: Commands for Determining Whether /proc is Mounted
Operating System Command
Compaq Tru64 UNIX 9 /sbin/mount —t procfs

/proc on /proc type procfs (rw)

SunOS 5 % /sbin/mount | grep /proc
/proc on /proc read/write/setuid on ...
IRIX % /sbin/mount | grep /proc

/proc on /proc type proc (rw)

If you receive the message shown from the mount command, the /proc file
system is mounted.

330 TotalView User’s Guide Version 4.1

Operating Systems

Swap Space

Compaq Tru64 UNIX and SunOS 5

To make sure that the /proc file system is mounted each time your system
boots, add the appropriate line from the following table to the appropriate

file.

Table 46: Commands for Automatically Mounting /proc File System
Operating

System Name of File Line to add

Compaq /etc/fstab /proc /proc procfs rw 0 O

Tru64 UNIX

Sun0S 5 /etc/vfstab /proc - /proc proc - no -

Then, to mount the /proc file system, enter the following command:

/sbin/mount /proc

IRIX

To make sure that the /proc file system is mounted each time your system
boots, make sure that /etc/rc2 issues the /etc/mntproc command. Then, to
mount the /proc file system, enter the following command:

/etc/mntproc

Swap Space
Debugging large programs can exhaust the swap space on your machine. If
you run out of swap space, TotalView exits with a fatal error, such as:

m Fatal Error; Out of space trying to allocate

This error indicates that either TotalView failed to allocate dynamic mem-
ory. It can occur anytime during a TotalView session or that the data size
limit in the C shell is too small. You can use the C shell’s limit command
to increase the data size limit. For example:

limit datasize unlimited
m job t::launch, creating process: Operation failed

Version 4.1 TotalView User's Guide 331

332

Operating Systems
“ Swap Space

This error indicates that the fork() or execve() system call failed while
TotalView was creating a process to debug. It can happen when TotalView
tries to create a process.

Compaq Tru64 UNIX

To find out how much swap space has been allocated and is currently being
used, use the swapon command on Compaq Tru64 UNIX:

% /sbin/swapon —s

Total swap allocation:

Allocated space: 85170 pages (665MB)

Reserved space: 14216 pages (16%)
Available space: 70954 pages (83%)

Swap partition /dev/rz3b:

Allocated space: 16384 pages (128MB)
In-use space: 2610 pages (15%)

Free space: 13774 pages (84%)])

Swap partition /dev/rz3h:

Allocated space: 52402 pages (409MB)
In-use space: 2575 pages (4%)])

Free space: 49827 pages (95%)

Swap partition /dev/rz1b:

Allocated space: 16384 pages (128MB)
In-use space: 2592 pages (15%)

Free space: 13792 pages (84%)

In this example, 665MB of swap has been allocated, and 106MB of it is cur-
rently in use.

To find out how much swap space is in use while you are running TotalView:
/bin/ps —o LFMT
For example, in this case the value in the VSZ column is 4.45MB:

UID PID PPID CP PRI NI VSZ RSS
12270 5340 5293 0 41 O 4.45M 1.27

To add swap space, use the /shin/swapon(8) command. You must be root
to use this command. For more information, refer to the on-line manual
page for this command.

TotalView User’s Guide Version 4.1

Version 4.1

Operating Systems

Swap Space

AIX

To find out how much swap space has been allocated and is currently being
used, use the pstat command:

% /usr/sbin/pstat —s
PAGE SPACE:

USED PAGES FREE PAGES
75585 115325

In this example, 122880 (7555 + 115325) pages of swap have been allo-
cated. 7555 pages are currently in use and 115325 pages are free.

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:
totalview executable
2 Press Ctrl-Z to suspend TotalView.
3 Use the following command to see how much swap space TotalView
is using:
ps u
For example, in this case the value in the SZ column is 5476KB:
USER PID %CPU % MEM SZ RSS TIY ...
smith 15080 0.0 6.0 5476 5476 pts/1 ...
To add swap space, use the AIX system management tool, smit. Use the fol-
lowing path through the smit menus:

System Storage Management — Logical Volume Manager —
Paging Space

HP HP-UX

The swapinfo command on an HP-UX system lets you find out how much
swap space is allocated and is being used. For example:

/usr/sbin/swapinfo

Kb Kb Kb PCT START/ Kb
TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 1048576 0 1048576 0% 0 - 1 /dev/vg00/lvol2
reserve - 389240 -389240

memory 1178960 966564 212396 82%

TotalView User's Guide

333

334

Operating Systems
“ Swap Space

To find out how much swap space is being used while Totalview is running,
type:

/usr/bin/ps -If
Here is an example of what you might see:

FS UID PID PPID C PRI NI ADDR SZ ...
21 T rtf 4414 13709 0 154 20 ce8d800 2764 ...

The SZ field shows the pages occupied by a program.

To add swap space, use the/usr/sbin/swapon(1M) command or the SAM
(System Administration Manager) utility. If you use SAM, invoke the Swap
command within the Disks and File Systems menu.

Maximum data size
To see the current data size limit in the C shell, type:

limit datasize
The following command displays the current hard limit, type:
limit -h datasize

If the current limit is lower than the hard limit, you can easily raise the cur-
rent limit. To change the current limit, type:

limit datasize new_data_size

If the hard limit is too low you must reconfigure and rebuild the kernel, and
then reboot. This is most easily done using SAM.

To change maxdsiz, use the following path through the SAM menus:

Kernel Configuration — Configurable Parameters — maxdsiz —
Actions — Modify Configurable Parameter —
Specify New Formula/Value — Formula/Value

You can now enter the new maximum data segment size.
You may also need to change the value for maxdsiz_64.

Here is the command that lets you rebuild the kernel with these changed
values:

Configurable Parameter — Actions — Process New Kernel

TotalView User’s Guide Version 4.1

Operating Systems

Swap Space

Answer yes to process the kernel modifications, yes to install the new ker-
nel, and yes again to reboot the machine with the new kernel.

When the machine reboots, the value you set for maxdsiz should be the new
hard limit.

SunOS 5

To find out how much swap space has been allocated and is currently being
used, use the swap command:
% /usr/sbin/swap —s

total: 16192K bytes allocated + 7140K bytes \
reserved = 23332K used, 63456K available

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:
totalview executable
2 Press Ctrl-Z to suspend TotalView.
3 Use the following command to see how much swap space TotalView
is using:
/bin/ps -
For example, in this case the value in the SZ column is 1036 pages, with
each page being 4K in size.
FS UID PID PPID C PRI NI ADDR ...
8 T 14694 3456 2558 80 1 20 ££451000
To add swap space, use the mkfile(1M) and swap(1M) commands. You
must be root to use these commands. For more information, refer to the on-
line manual pages for these commands.

IRIX

To find out how much swap space has been allocated and is currently being
used, use the swap command:

% /sbin/swap —s
total: 1.55m allocated + 124.47m add’l reserved =
126.02m bytes used, 250.94m bytes available

To find out how much swap space is in use while you are running TotalView:

Version 4.1 TotalView User's Guide 335

336

Operating Systems
“ Swap Space

1 Start TotalView with a large executable:
totalview executable
2 Press Ctrl-Z to suspend TotalView.
3 Use the following command to see how much swap space TotalView
is using:
/bin/ps -
For example, in this case the value in the SZ column is 584 pages.

F S UID PID PPID C PRI NI P
b0 T 14694 26236 26271 5 62 20 *

Use the following command to determine the number of bytes in a page:
sysconf PAGESIZE

To add swap space, use the mkfile(1M) and swap(1M) commands. You
must be root to use these commands. For more information, refer to the on-
line manual pages for these commands.

Linux

To find out how much swap space has been allocated and is currently being
used, use either the swapon or top commands on Linux:

% /sbin/swapon -s

Filename Type Size Used Priority
/dev/hda’7 partition 128484 28 -1
% top

jcownie@pc2: top

(null) 1:29pm up 4:28, 1 user, load average: 0.00, 0.00, 0.00
52 processes: 50 sleeping, 2 running, 0 zombie, 0 stopped

CPU states: 1.1% user, 0.4% system, 0.0% nice, 98.4% idle
Mem: 127904K a, 116512K used, 11392K free, 36020K shrd, \

3632K buff
Swap: 128484K av, 28K used, 128456K free 79804K cached
remainder of "top" listing removed ...

You can use the mkswap(8) command to create swap space. The swapon(8)
command tells Linux that it should use this space.

TotalView User’s Guide Version 4.1

Operating Systems

Shared Libraries

Shared Libraries

Version 4.1

TotalView supports dynamically linked executables, that is, executables that
are linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView
loads an additional set of symbols for the shared libraries, as indicated in
the shell from which you started TotalView. To accomplish this, TotalView:

B Runs a sample process and discards it.
B Reads information from the process.
B Reads the symbol table for each library.

When you create a process without starting it, and the process does not

include shared libraries, the program counter points to the entry point of
the process, usually the start routine. If the process does include shared
libraries, however, TotalView takes the following actions:

B Runs the dynamic loader (SunOS 5: Id.so, Compaq Tru64 UNIX:
/sbin/loader, Linux: /lib/Id-linux.so.?, IRIX: rld).

m Sets the PC to point to the location after the invocation of the dynamic
loader but before the invocation of C+ + static constructors or the main
routine.

NOTE ON HP-UX, TotalView cannot stop the loading of shared libraries until

after static constructors on shared library initialization routines have been run.

When you attach to a process that uses shared libraries, TotalView takes the
following actions:

m If you attached to the process after the dynamic loader ran, then
TotalView loads the dynamic symbols for the shared library.

® If you attached to the process before it runs the dynamic loader,
TotalView allows the process to run the dynamic loader to completion.
Then, TotalView loads the dynamic symbols for the shared library.

If desired, you can suppress the use of shared libraries by starting TotalView
with the —-no_dynamic option. Refer to Chapter 12 “TotalView Command Syn-
tax” on page 299 for details on this TotalView start-up option.

TotalView User's Guide

337

Operating Systems
“ Debugging Dynamically Loaded Libraries

If you believe that a shared library has changed since you started a Totalview
session, you can use the Reload Shared Library Information command on
the Current/Update/Relative submenu to reload library symbol tables. Be
aware that only some systems such as AIX permit you to reload library infor-
mation.

Using Shared Libraries on HP-UX

The dynamic library loader on HP-UX loads shared libraries into shared
memory. Writing breakpoints into code sections loaded in shared memory
can cause programs not under TotalView's control to fail when they execute
an unexpected breakpoint.

If you need to single-step or set breakpoints in shared libraries you must set
your application to load those libraries in private memory. This is done using
HP’s pxdb command.

pxdb -s on appname (load shared libraries into private memory)

pxdb -s off appname (load shared libraries into shared memory)
For 64-bit platforms, use pxdb64 instead of pxdb. If the version of
pxdb64.exe supplied with HP's compilers does not work correctly, you may
need to install an HP-supplied patch. You will find additional information on
the TOTALVIEW RELEASE NOTES.

Debugging Dynamically Loaded Libraries

338

TotalView automatically reads the symbols of shared libraries that are
dynamically loaded into your program at runtime. These libraries are ones
that are loaded using dlopen (or, on IBM AIX, load and loadbind).

TotalView automatically detects these calls, then loads the symbol table
from the newly loaded libraries and plants any enabled saved breakpoints
for these libraries. TotalView then decides whether to ask you about stop-
ping the process to plant breakpoints. TotalView decides according to the
following rules:

TotalView User’s Guide Version 4.1

Version 4.1

Operating Systems

Debugging Dynamically Loaded Libraries

1 If the “ask on dlopen” option is set to false, TotalView does not ask you
about stopping.

2 If one or more of the strings in the "DLL Do Query on Load” list is a
suffix of the full library name (including path), TotalView asks you
about stopping.

3 If one or more of the strings in the "DLL Don’t Query on Load” list is a
prefix of the full library name (including path), TotalView does not ask
you about stopping.

4 If the newly loaded libraries have any saved breakpoints, TotalView
does not ask you about stopping.

5 If none of the rules above apply, TotalView asks you about stopping.

If TotalView does not ask you about stopping the process, the process is
continued.

If TotalView decides to ask you about stopping, it displays a dialog box as
shown in Figure 122. To stop the process, answer yes. To allow the process
to continue executing, answer no. Stopping the process allows you to insert
breakpoints in the newly loaded shared library.

Process dlopen haz loaded the libraries ,/libshared_lib,=o,/usr/lib/libpthread,so,1,/usr/1ib/libm,so,1
Stop the process so you can set breakpoints 7

Figure 122: dlopen Dialog Box

Control the —ask_on_dlopen option by doing either or both of the follow-
ing:

B Set the command line option —ask_on_dlopen to set the “ask on dlopen”
option to true, or —no_ask_on_dlopen to set it to false.

B Set the X resource "TOTALVIEW* ASKONDLOPEN" on page 276.

You can set the "DLL Do Query on Load” and "DLL Don’t Query on Load”
lists initially from the X resources:

B "TOTALVIEW*DLLSTOPSUFFIX” on page 280 sets the "DLL Do Query on Load”
list and defaults to empty.

TotalView User's Guide

339

Operating Systems
“ Debugging Dynamically Loaded Libraries

B “TOTALVIEW*DLLIGNOREPREFIX” on page 280 sets the "DLL Don’t Query on
Load” list, and defaults to the standard library paths for the system
TotalView is running.

The following table lists the “don’t query on load list” library paths:
Table 47: Default DLL Don’t Query on Load List

Platform Value

Compaqg TruB4 UNIX /usr/shlib/ Jusr/ccs/lib/

Alpha /usr/lib/cmplrs/cc//usr/lib/
/usr/local/lib/ /var/shlib/

HP-UX Jusr/lib/ /usr/lib/pa20_64
/opt/langtools/lib/ /opt/langtools/lib/pa20 64/

IBM AIX Nlib/ Jusr/lib/
Jusr/lpp/ Jusr/ccs/lib/
Jusr/dt/lib/ /femp/

SGl IRIX Nlib/ Jusr/lib/
/usr/local/lib/ Nib32/
Jusr/lib32/ /usr/local/lib32/
/lib64/ Jusr/libB4/
/usr/local/lib64

SUN Solaris 2.x Nlib/ Jusr/lib/
Jusr/ccs/lib/

Linux x86 Nlib Jusr/lib

Linux Alpha Nlib Jusr/lib

The values of the X resources should be space-separated lists of the prefixes
and suffixes to be used. If you change the dllignorePrefix, you probably
want to copy the default values into the new list.

After starting TotalView, you can change these lists using the Set DLL Do
Query on Load and Set DLL Don’t Query on Load commands in the
Display/Directory/Edit submenu in the Process Window.

Breakpoint files written by this version are not, readable by TotalView ver-
sion 3.8 or earlier if they contain breakpoints in dynamic libraries.

Known Limitations

Dynamic library support has the following know limitations:

340 TotalView User’s Guide Version 4.1

Operating Systems

Remapping Keys

B TotalView doesn’t deal correctly with parallel programs that call dlopen
on different libraries in different processes. TotalView requires that the
processes have a uniform address space, including all shared libraries.

B TotalView doesn't yet fully support unloading libraries (using dlclose) and
then reloading them at a different address using dlopen.

Remapping Keys
On the SunOS 5 keyboard you may need to remap the page-up and page-
down keys to the Prior and Next keysym so that you can scroll TotalView win-
dows with the page-up and page-down keys. To do so, add the following
lines to your X Window System start-up file:
Remap F29/F35 to PgUp/PgDn

xmodmap -e 'keysym F29 = Prior'
xmodmap -e keysym F35 = Next'

Expression System

Depending on the target platform, TotalView supports:

B An interpreted expression system only
m Both an interpreted and a compiled expression system

Unless stated otherwise below, TotalView supports interpreted expressions
only. See “Interpreted Versus Compiled Expression Performance” on page 219 for
more information on the differences between interpreted and compiled
expressions.

IBM AIX

On IBM AIX, TotalView supports compiled and interpreted expressions.
TotalView also supports assembler in expressions.

Some program functions called from the TotalView expression system on
the Power architecture cannot have floating-point arguments which are
passed by value. However, in functions with a variable number of argu-
ments, floating-point arguments can be in the varying part of the argument

Version 4.1 TotalView User's Guide 341

Operating Systems
“ Expression System

list. For example, you can include floating-point arguments with calls to
printf:

double d = 3.141589;
printf('d = %An", d);

Compaq Tru64 UNIX

On Compagq Tru64 UNIX, TotalView supports compiled and interpreted
expressions. TotalView also supports assembler in expressions.

SGI IRIX

On IRIX, TotalView supports compiled and interpreted expressions. Total-
View also supports assembler in expressions.

TotalView includes the SGI IRIX expression compiler. This feature does not
use any MIPS-IV specific instructions. It does use MIPS-Ill instructions freely.
It fully supports —n32 and —64 executables.

Due to limitations when dynamically allocating patch space, compiled
expression are disabled by default on SGI IRIX. To enable compiled expres-
sions in an invocation of TotalView, use the X resource "TOTALVIEW* COMPILE-
EXPRESSIONS” on page 279 to set the option to true, or pass the X resource
as the command line option —compileExpressions=true. This option also
tells TotalView to find or allocate patch space in your program for code frag-
ments generated by the expression compiler.

If you enable compiled patches on SGI IRIX with a multiprocess program,
you must use static patches. For example, if you link a static patch space
into an IRIX MPI program and run the program under TotalView's control,
TotalView should let you debug it. If you attach to a previously started MPI
job, however, even static patches won't let the program run properly. If
TotalView still fails to work properly with the static patch space, then you
probably can't use compiled patches with your program.

For general instructions on using patch space allocation controls with com-
piled expressions, see ‘Allocating Patch Space for Compiled Expressions” on page
220.

342 TotalView User’s Guide Version 4.1

Appendix C

Architectures

This appendix describes the architectures TotalView supports, including:

m Power

B Alpha

B HP PA-RISC

m SPARC

m MIPS

B Intel-x86 (Intel 80386, 80486 and Pentium processors)

It includes the following topics for each architecture:

B General registers
B Floating-point registers
B Floating-point format

Power

Power General Registers

TotalView displays Power general registers in the Stack Frame Pane of the
Process Window. The following table describes how TotalView treats each
general register, and the actions you can take with each register.

Table 48: Power General Purpose Integer Registers

Specify in
Register Description Data Type Edit Dive Expression
RO General register 0 <int> yes yes Sr0
SP Stack pointer <int> yes yes Ssp

Version 4.1 TotalView User's Guide 343

C Architectures

Table 48: Power General Purpose Integer Registers (cont.)

Specify in
Register Description Data Type Edit Dive Expression
RTOC TOC pointer <int> yes yes Srtoc
R3 -R31 General registers 3 -31 <int> yes yes Sr3-5r31
INUM <int> yes no Sinum
PC Program counter <code>|| no yes $pc
SRR1 Machine status <int> yes no Ssirl
save/restore register
LR Link register <int> yes no Slr
CTR Counter register <int> yes no Sctr
CR Condition register <int> yes no Scr
XER Integer exception register <int> yes no Sxer
DAR Data address register <int> yes no Sdar
MQ MQ register <int> yes no S$mq
MSR Machine state register <int> yes no Smsr
SEGO — SEG9 Segment registers0 -9 <int> yes no Sseg0 —
$seg9
SG10-SG15 Segment registers 10 —15 <int> yes no Ssgl0 -
Ssgl5
SCNT SS _COUNT <int> yes no Sscnt
SADI SS ADDR 1 <int> yes no Ssadl
SAD2 SS_ADDR 2 <int> yes no $sad2
SCD1 SS CODE 1 <int> yes no Sscdl
SCD2 SS CODE 2 <int> yes no S$scd2

TID <int> yes no

Power MSR Register

For your convenience, TotalView interprets the bit settings of the Power MSR
register. You can edit the value of the MSR and set it to any of the bit settings
outlined in the following table.

Table 49: Power MSR Register Bit Settings

Value Bit Setting Meaning
0x00040000 POW Power management enable
0x00020000 TGPR Temporary GPR mapping

344 TotalView User’s Guide Version 4.1

Version 4.1

Architectures

Power

Table 49: Power MSR Register Bit Settings (cont.)

Value

0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000040
0x00000020
0x00000010
0x00000002
0x00000001

Bit Setting
ILE

EE

PR

FP

ME

FEO

SE

BE

LE

Meaning

Exception little-endian mode
External interrupt enable
Privilege level

Floating-point available
Machine check enable
Floating-point exception mode 0
Single-step trace enable

Branch trace enable
Floating-point exception mode 1
Exception prefix

Instruction address translation
Data address translation
Recoverable exception
Little-endian mode enable

Power Floating-Point Registers

TotalView displays the Power floating-point registers in the Stack Frame
Pane of the Process Window. The next table describes how TotalView treats

each floating-point register, and the actions you can take with each register.

Table 50: Power Floating-Point Registers

Register
FO - F31

FPSCR

FPSCR?2

Description
Floating-point registers
0-31

Floating-point status
register

Floating-point status
register 2

Specify in
Data Type Edit Dive Expression
<double> yes yes S$f0—Sf31

<int> yes no Sfpscr

<int> yes no Sfpscr2

TotalView User's Guide

345

346

Power

Architectures

Power FPSCR Register

For your convenience, TotalView interprets the bit settings of the Power
FPSCR register. You can edit the value of the FPSCR and set it to any of the
bit settings outlined in the following table.

Table 51: Power PFSCR Register Bit Settings

Value

0x80000000
0x40000000
0x20000000

0x10000000
0x08000000
0x04000000
0x02000000
0x01000000

0x00800000

0x00400000

0x00200000
0x00100000

0x00080000

0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00011000
0x00009000
0x00008000

TotalView User’s Guide

Bit Setting
FX

FEX

VX

OoX
UX
zX
XX
VXSNAN

VXIS
VXIDI

VXZDZ
VXIMZ

VXVC

FR

FI

FPRF=(C)
FPRF=(L)
FPRF=(G)
FPRF=(E)
FPRF=(U)
FPRF=(QNAN)
FPRF=(-INF)
FPRF=(-NORM)

Meaning
Floating-point exception summary
Floating-point enabled exception summary

Floating-point invalid operation exception
summary

Floating-point overflow exception
Floating-point underflow exception
Floating-point zero divide exception
Floating-point inexact exception

Floating-point invalid operation exception for
SNaN

Floating-point invalid operation exception:
oo — OO

Floating-point invalid operation exception:
oo [oo
Floating-point invalid operation exception: 0/0

Floating-point invalid operation exception:
o0 * 00

Floating-point invalid operation exception:
invalid compare

Floating-point fraction rounded
Floating-point fraction inexact
Floating-point result class descriptor
Floating-point less than or negative
Floating-point greater than or positive
Floating-point equal or zero
Floating-point unordered or NaN
Quiet NaN: alias for FPRF=(C+U)
~Infinity; alias for FPRF=(L+U)

~Normalized number; alias for FPRF=(L)

Version 4.1

Version 4.1

Architectures

Power

Table 51: Power PFSCR Register Bit Settings (cont.)

Value

0x00018000
0x00012000
0x00002000
0x00014000
0x00004000
0x00005000
0x00000400

0x00000200

0x00000100

0x00000080

0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000000
0x00000001
0x00000002
0x00000003

Bit Setting
FPRF=(-DENORM)
FPRF=(-ZERO)
FPRF=(+ZERO)
FPRF=(+DENORM)
FPRF=(+NORM)
FPRF=(+INF)
VXSOFT

VXSQRT
VXCVI
VE

OE

UE

ZE

XE

NI
RN=NEAR
RN=ZERO
RN=PINF
RN=NINF

Meaning

-Denormalized number; alias for FPRF=(C+L)
-Zero; alias for FPRF=(C+E)

+Zero; alias for FPRF=(E)

+Denormalized number; alias for FPRF=(C+G)
+Normalized number; alias for FPRF=(G)
+Infinity; alias for FPRF=(G+U)

Floating-point invalid operation exception:
software request

Floating-point invalid operation exception:
square root

Floating-point invalid operation exception:
invalid integer convert

Floating-point invalid operation exception
enable

Floating-point overflow exception enable
Floating-point underflow exception enable
Floating-point zero divide exception enable
Floating-point inexact exception enable
Floating-point non-IEEE mode enable
Round to nearest

Round toward zero

Round toward +infinity

Round toward -infinity

Using the Power FPSCR Register

On AlIX, if you compile your program to catch floating point exceptions (IBM
compiler ~gflttrap option), you can change the value of the FPSCR within
TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPSCR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPSCR to include 0x10 (as shown in
Table 51) so that TotalView traps the “divide by zero” exception. The string
displayed next to the FPSR register should now include “ZE”. Now, when

TotalView User's Guide

347

348

C Architectures

your program divides by zero, it receives a SIGTRAP signal, which will be
caught by TotalView. See Chapter 3 “Setting Up a Debugging Session” on page
29 and “Handling Signals” on page 41 for more information. If you did not set
the bit for trapping divide by zero or you did not compile to catch floating
point exceptions, your program would not stop and the processor would set
the “zX" bit.

Power Floating-Point Format

The Power architecture supports the IEEE floating-point format.

HP PA-RISC

PA-RISC General Registers

TotalView displays the PA-RISC general registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats
each general register and the actions you take with them.

Table 52: PA-RISC General Registers

Specify in
Register Description Data Type Edit Dive Expression
10 always contains zero <long> no no Sr0
rl-r31 general registers <long> yes yes Sr1-8r31
pc current instruction pointer <long> yes yes Spc
nxtpc next instruction pointer <long> yes yes Snxtpc
pcs current instruction space <long> no no Spcs
nxtpcs next instruction space <long> no no Snxtpcs
psw processor status word <long> yes no Spsw
sar shift amount register <long> yes no Ssar
st0-sr7 space registers <long> no no $sr0-Ssr7
recov recovery counter <long> no no Srecov
pidl-pid8 protection ids <long> no no Spidl-Spid8
ccr coprocessor configuration <long> no no Scer
scr SFU configuration register ~ <long> no no Sscr

TotalView User’s Guide Version 4.1

Version 4.1

Table 52:

Register
eiem

iir

isr

ior
cr24-cr26
p

PA-RISC Process Status Word

Architectures

Description

external interrupt enable

mask

interrupt instruction
interrupt space
interrupt offset
temporary registers
thread pointer

PA-RISC General Registers

HP PA-RISC

Specify in
Data Type Edit Dive Expression
<long> no no Seiem
<long> no no Siir
<long> no no Sisr
<long> no no Sior
<long> no no S$cr24-Scr26
<long> yes yes Stp

For your convenience, TotalView interprets the bit settings of the PA-RISC
Processor Status Word. You can edit the value of this word and set some of
the bits listed in the following table

Table 53: PA-RISC Processor Status Word

Value

T O M T OoOZT<OWXZOCO@ID S 0ms

Bit Setting

0x0000000008000000
0x0000000004000000
0x0000000002000000
0x0000000001000000
0x0000000000800000
0x0000000000400000
0x0000000000200000
0x0000000000100000
0x0000000000080000
0x0000000000040000
0x0000000000020000
0x0000000000010000
0x0000000000000080
0x0000000000000020
0x0000000000000010
0x0000000000000008
0x0000000000000004

Meaning

64-bit addressing enable

little-endian enable

secure interval timer

taken branch flag

higher privilege transfer trap enable
lower privilege transfer trap enable
nullify current instruction

data memory break disable

taken branch flag

code address translation enable
divide step correction

high-priority machine check mask
ordered references

performance monitor interrupt unmask
recovery counter enable

interrupt state collection enable
protection identifier validation enable

TotalView User's Guide

349

350

Architectures

HP PA-RISC

Table 53: PA-RISC Processor Status Word (cont.)

Value

D
I
/B

Bit Setting

0x0000000000000002
0x0000000000000001
0x000000FFO000FF00

Meaning
data address translation enable
external interrupt unmask

carry/borrow bits

PA-RISC Floating-Point Registers

The PA-RISC has 32 floating point registers. The first four are used for status
and exception registers. The rest can be addressed as 64 bit doubles, as two
32 bit floats in the right and left sides of the register, or even-odd pairs of
registers as 128 bit extended floats.

Table 54: PA-RISC Floating-Point Registers

Register
status
erl-er7
fr4-fr31

fral-fr311
frar-fr31r

fra/fr5-
fr30/fr31

Description
Status register
Exception registers

Double floating point
registers

Left half floating point
registers

Right half floating point
registers

Extended floating point
register pairs

Specify in
Data Type Edit Dive Expression
<int> no no Sstatus
<int> no no Serl-Ser7
<double> yes yes Sfrd-Sfr31
<float> yes yes Sfral-Sfr31l
<float> yes yes Sfrdr-Sfr3lr
<extended> yes yes Sfr4 fr5-

$fr30_fr31

The floating-point status word controls the arithmetic rounding mode,
enables user-level traps, enables floating point exceptions, and indicates
the results of comparisons.

Table 55: Floating-Point Status Word Use

Type Value
Rounding Mode 0

1

2

3

TotalView User’s Guide

Meaning

Round to nearest

Round towards zero
Round towards +infinity

Round towards -infinity

Version 4.1

Architectures

HP PA-RISC

Table 55: Floating-Point Status Word Use (cont.)

Type Value Meaning
Exception Enable and \% Invalid operation
Exception Flag Bits 7 Division by zero
0 Overflow
0] Underflow
I Inexact result
Comparison Fields C Compare bit, contains the result of the most

recent queued compare instruction

Cca Compare queue, contains the result of the
second-most recent queued compare through
the twelfth-most recent queued compare;
each queued compare instruction shifts the
CQ field right one bit and copies the C bit into
the left most position

This field occupies the same bits as the CA
field and is undefined after a targeted compare

CA Compare array, is an array of seven compare
bits, each of which contains the result of the
most recent compare instruction targeting that
bit
This field occupies the same bits as the CQ
field and is undefined after a queued compare

Other Flags: T Delayed trap

D Denormalized as zero

PA-RISC Floating-Point Format

The PA-RISC processor supports the IEEE floating-point format.

Version 4.1 TotalView User's Guide 351

Architectures

SPARC

SPARC

SPARC General Registers

TotalView displays the SPARC general registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats
each general register, and the actions you can take with each register.

Table 56: SPARC General Registers

Specify in
Register Description Data Type Edit Dive Expression
GO Global zero register <int> no no $g0
Gl -G7 Global registers <int> yes yes Sgl —Sg7
00-05 Outgoing parameter <int> yes yes $00 — S05
registers
SP Stack pointer <int> yes yes Ssp
o7 Temporary register <int> yes yes $o7
L0 - L7 Local registers <int> yes yes Sl0—Sl7
[0-15 Incoming parameter <int> yes yes Si0-Si5
registers
FP Frame pointer <int> yes yes Sfp
7 Return address <int> yes yes Si7
PSR Processor status register <int> yes no Spsr
Y Y register <int> yes yes Sy
WIM WIM register <int> no no
TBR TBR register <int> no no
PC Program counter <code>|] no yes Spc
nPC Next program counter <code>|| no yes Snpc
TotalView User’s Guide Version 4.1

Version 4.1

Architectures

SPARC PSR Register

SPARC

For your convenience, TotalView interprets the bit settings of the SPARC PSR
register. You can edit the value of the PSR and set some of the bits outlined

in the following table.

Table 57: SPARC PSR Register Bit Settings

Value Bit Setting

ET 0x00000020
PS 0x00000040
S 0x00000080
EF 0x00001000
EC 0x00002000
C 0x00100000
Vv 0x00200000
Z 0x00400000
N 0x00800000

Meaning

Traps enabled

Previous supervisor
Supervisor mode
Floating-point unit enabled
Coprocessor enabled

Carry condition code
Overflow condition code
Zero condition code
Negative condition code

SPARC Floating-Point Registers

TotalView displays the SPARC floating-point registers in the Stack Frame
Pane of the Process Window. The next table describes how TotalView treats
each floating-point register, and the actions you can take with each register.

Table 58: SPARC Floating-Point Registers

Register Description

Specify in
DataType Edit Dive Expression

FO - F31 Floating-point registers (f ~ <float> yes yes Sf0-Sf31
registers), used singly

FO/F1 - Floating point registers (f ~ <double> yes yes S0 fl -

F30/F31 registers), used as pairs $f30 31

FPCR Floating-point control <int> no no Sfpcr
register

FPSR Floating-point status <int> yes no Sfpsr
register

TotalView User's Guide

353

C Architectures

TotalView allows you to use these registers singly or in pairs, depending on
how they are used by your program. For example, if you use F1 by itself, its
type is <float>, but if you use the FO/F1 pair, its type is <double>.

SPARC FPSR Register

For your convenience, TotalView interprets the bit settings of the SPARC
FPSR register. You can edit the value of the FPSR and set it to any of the bit
settings outlined in the following table.

Table 59: SPARC FPSR Register Bit Settings

Value Bit Setting Meaning

CEXC=NX 0x00000001 Current inexact exception

CEXC=DZ 0x00000002 Current divide by zero exception
CEXC=UF 0x00000004 Current underflow exception

CEXC=OF 0x00000008 Current overflow exception

CEXC=NV 0x00000010 Current invalid exception

AEXC=NX 0x00000020 Accrued inexact exception

AEXC=DZ 0x00000040 Accrued divide by zero exception
AEXC=UF 0x00000080 Accrued underflow exception

AEXC=OF 0x00000100 Accrued overflow exception

AEXC=NV 0x00000200 Accrued invalid exception

EQ 0x00000000 Floating-point condition =

LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

QNE 0x00002000 Queue not empty

NONE 0x00000000 Floating-point trap type None

I[EEE 0x00004000 Floating-point trap type IEEE Exception
UFIN 0x00008000 Floating-point trap type Unfinished FPop
UIMP 0x0000c000 Floating-point trap type Unimplemented FPop
SEQE 0x00010000 Floating-point trap type Sequence Error
NS 0x00400000 Non-standard floating-point FAST mode
TEM=NX 0x00800000 Trap enable mask — Inexact Trap Mask
TEM=DZ 0x01000000 Trap enable mask — Divide by Zero Trap Mask
TEM=UF 0x02000000 Trap enable mask — Underflow Trap Mask

354 TotalView User’s Guide Version 4.1

Version 4.1

Architectures

SPARC

Table 59: SPARC FPSR Register Bit Settings (cont.)

Value Bit Setting Meaning

TEM=OF 0x04000000 Trap enable mask — Overflow Trap Mask
TEM=NV 0x08000000 Trap enable mask — Invalid Operation Trap Mask
EXT 0x00000000 Extended rounding precision — Extended

precision

SGL 0x10000000 Extended rounding precision — Single precision
DBL 0x20000000 Extended rounding precision — Double precision
NEAR 0x00000000 Rounding direction — Round to nearest (tie-even)
ZERO 0x40000000 Rounding direction — Round to 0

PINF 0x80000000 Rounding direction — Round to +Infinity

NINF 0xc0000000 Rounding direction — Round to -Infinity

Using the SPARC FPSR Register

The SPARC processor does not catch floating-point errors by default. You
can change the value of the FPSR within TotalView to customize the excep-
tion handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPSR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPSR to include 0x01000000 (as shown
in Table 59) so that TotalView traps the “divide by zero” bit. The string dis-
played next to the FPSR register should now include TEM=(DZ). Now, when
your program divides by zero, it receives a SIGFPE signal, which you can
catch with TotalView. See Chapter 3 “Setting Up a Debugging Session” on page
29 and “Handling Signals” on page 41 for more information. If you did not set
the bit for trapping divide by zero, the processor would ignore the error and
set the AEXC=(DZ) bit.

SPARC Floating-Point Format

The SPARC processor supports the IEEE floating-point format.

TotalView User's Guide

355

C Architectures

Alpha

Alpha General Registers

TotalView displays the Alpha general registers in the Stack Frame Pane of the
Process Window. The next table describes how TotalView treats each general
register, and the actions you can take with each register.

Table 60: Alpha General Purpose Integer Registers

Specify in

Register Description Data Type Edit Dive Expression

VO Function value register <long> yes yes Sv0

TO - T7 Conventional scratch <long> yes yes St0-St7
registers

S0 - S5 Conventional saved <long> yes yes $s0—Ss5
registers

S6 Stack frame base register ~ <long> yes yes Ss6

A0 — A5 Argument registers <long> yes yes $a0-S$a5

T8 -TIl Conventional scratch <long> yes yes St8-Stll
registers

RA Return Address register <long> yes yes Sra

T12 Procedure value register <long> yes yes Stl2

AT Volatile scratch register <long> yes yes Sat

GP Global pointer register <long> yes yes Sgp

SP Stack pointer <long> yes yes Ssp

ZERO ReadAsZero/Sink register ~ <long> no yes Szero

PC Program counter <code>|[] no yes Spc

FP Frame pointer; the Frame <long> no yes Sfp
Pointer (FP) is a software
register that TotalView

maintains; it is not an actual
hardware register—
TotalView computes the
value of FP as part of the
stack backtrace

356 TotalView User’s Guide Version 4.1

Version 4.1

Alpha Floating-Point Registers

TotalView displays the Alpha floating-point registers in the Stack Frame
Pane of the Process Window. Here is a table describes how TotalView treats

each floating-point register, and the actions you can take with each register.

Table 61: Alpha Floating-Point Registers

Register
FO-Fl1

F2-F9
FI0-F15

F16 -F21
F22 -F30

F31
FPCR

Description Data Type

Floating-point registers (f ~ <double>
registers), used singly

Conventional saved <double>
registers
Conventional scratch <double>
registers
Argument registers <double>
Conventional scratch <double>
registers

ReadAsZero/Sink register ~ <double>

Floating-point control <long>

register

Alpha FPCR Register

For your convenience, TotalView interprets the bit settings of the Alpha
FPCR register. You can edit the value of the FPCR and set it to any of the bit
settings outlined in the following table.

Alpha FPCR Register Bit Settings

Value
SUM

DYN=CHOP

DYN=MINF

Bit Setting
0x8000000000000000

0x0000000000000000

0x0400000000000000

Edit
yes

yes

yes

yes

yes

yes

yes

Meaning

Summary bit

Architectures

Dive
yes

yes

yes

yes
yes

yes
no

Alpha

Specify in
Expression
Sf0 - 1
Sf2 - $f9
$f10 - $f15

Sf16 - 5f21
522 - 5£30

Sf31
Sfper

Rounding mode — Chopped
rounding mode

Rounding mode — Minus

infinity

TotalView User's Guide

357

C Architectures

Value Bit Setting Meaning

DYN=NORM 0x0800000000000000 Rounding mode — Normal
rounding

DYN=PINF 0x0c00000000000000 Rounding mode — Plus infinity

(0)% 0x0200000000000000 Integer overflow

INE 0x0100000000000000 Inexact result

UNF 0x0080000000000000 Underflow

OVF 0x0040000000000000 Overflow

DZE 0x0020000000000000 Division by zero

INV 0x0010000000000000 Invalid operation

Alpha Floating-Point Format

The Alpha processor supports the IEEE floating point format.

MIPS

358

MIPS General Registers

TotalView displays the MIPS general purpose registers in the Stack Frame
Pane of the Process Window. The following table describes how TotalView
treats each general register, and the actions you can take with each register.

Programs compiled either —64 or —n32 have 64 bit registers. TotalView uses
<long> for -64 compiled programs and <long long> for -n32 compiled
programs.

Table 62: MIPS General (Integer) Registers

Specify in
Register Description Data Type Edit Dive Expression
ZERO Always has the value 0 <long> no no Szero
AT Reserved for the assembler <long> yes yes Sat
VO -VI Function value registers <long> yes yes Sv0-Svl
TotalView User’s Guide Version 4.1

Version 4.1

Table 62: MIPS General (Integer) Registers (cont.)

Register
A0 - A7
TO-T3
S0-S7
T8 -T9
KO - K1

GP
SP
S8
RA
MDLO

MDHI

CAUSE
EPC
SR
VFP

Description
Argument registers
Temporary registers
Saved registers
Temporary registers

Reserved for the operating
system

Global pointer

Stack pointer

Hardware frame pointer
Return address register
Multiply/Divide special
register, holds least-
significant bits of multiply,
quotient of divide
Multiply/Divide special
register, holds most-
significant bits of multiply,
remainder of divide
Cause register

Program counter

Status register

Virtual frame pointer

The virtual frame pointer is a

software register that

TotalView maintains. It is not

an actual hardware register.

TotalView computes the VFP

as part of stack backtrace.

Data Type
<long>

<long>
<long>
<long>
<code>||
<long>

<long>

<long>
<code>|
<long>
<long>

Edit
yes
yes
yes
yes

yes

yes
yes
yes
no

yes

yes

yes

no

no

Architectures

Dive
yes
yes
yes
yes

yes

yes
yes
yes
yes
yes

yes

yes
yes
no

no

MIPS

Specify in
Expression

Sa0 - Sa7
St0 - St3
$s0 — $s7
St8 — St9
Skl —Sk2

Sgp
Ssp
Ss8
Sra
Smdlo

$mdhi

Scause
Sepc
Ssr
Svip

TotalView User's Guide

359

C Architectures

MIPS SR Register

For your convenience, TotalView interprets the bit settings of the SR register
as outlined in the next table.

Table 63: MIPS SR Register Bit Settings

Value Bit Setting Meaning

0x00000001 IE Interrupt enable

0x00000002 EXL Exception level

0x00000004 ERL Error level

0x00000008 S Supervisor mode

0x00000010 U User mode

0x00000018 U Undefined (implemented as User mode)
0x00000000 K Kernel mode

0x00000020 UX User mode 64-bit addressing
0x00000040 SX Supervisor mode 64-bit addressing
0x00000080 KX Kernel mode 64-bit addressing
0x0000FFO0 IM=i Interrupt Mask value is i

0x00010000 DE Disable cache parity/ECC
0x00020000 CE Reserved

0x00040000 CH Cache hit

0x00080000 NMI Non-maskable interrupt has occurred
0x00100000 SR Soft reset or NMI exception
0x00200000 TS TLB shutdown has occurred
0x00400000 BEV Bootstrap vectors

0x02000000 RE Reverse-Endian bit

0x04000000 FR Additional floating-point registers enabled
0x08000000 RP Reduced power mode

0x10000000 CUO Coprocessor 0 usable

0x20000000 CU1 Coprocessor 1 usable

0x40000000 CU2 Coprocessor 2 usable

0x80000000 XX MIPS IV instructions usable

360 TotalView User’s Guide Version 4.1

Architectures

MIPS

MIPS Floating-Point Registers

TotalView displays the MIPS floating-point registers in the Stack Frame Pane
of the Process Window. Here is a table that describes how TotalView treats
each floating-point register, and the actions you can take with each register.

Table 64: MIPS Floating-Point Registers

Register
FO, F2

FI -F3,
F4 -F11

FI12-F19

F20 - F23
F24 —F31
FCSR

Description

Specify in
Data Type Edit Dive Expression

Hold results of floating- <double> yes yes S$f0, Sf2
point type function. $f0 has
the real part, $f2 has the

imaginary part
Temporary registers

Pass single or double

<double> vyes yes Sfl -Sf3,
Sf4 —Sf11

<double> vyes yes $f12-5f19

precision actual arguments

Temporary registers
Saved registers

<double> yes yes $f20 - 523
<double> yes yes $f24 —$f31

FPU control and status <int> yes no Sfesr

register

MIPS FCSR Register

For your convenience, TotalView interprets the bit settings of the MIPS FCSR
register. You can edit the value of the FCSR and set it to any of the bit set-
tings outlined in the following table

Table 65: MIPS FCSR Register Bit Settings

Value

RM=RN
RM=RZ
RM=RP

Version 4.1

Bit Setting

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000008
0x00000010
0x00000020

Meaning

Round to nearest

Round toward zero

Round toward plus infinity
Round toward minus infinity
Flag=inexact result
Flag=underflow
Flag=overflow

Flag=divide by zero

TotalView User's Guide

361

C Architectures

Table 65: MIPS FCSR Register Bit Settings (cont.)

Value Bit Setting Meaning
flags=(V) 0x00000040 Flag=invalid operation
enables=(I) 0x00000080 Enables=inexact result

I
enables=(U) 0x00000100 Enables=underflow
enables=(0) 0x00000200 Enables=overflow
enables=(Z) 0x00000400 Enables=divide by zero
enables=(V) 0x00000800 Enables=invalid operation

cause=(I) 0x00001000 Cause=inexact result

cause=(U) 0x00002000 Cause=underflow

cause=(0) 0x00004000 Cause=overflow

cause=(Z) 0x00008000 Cause=divide by zero

cause=(V) 0x00010000 Cause=invalid operation

cause=(E) 0x00020000 Cause=unimplemented

FCC=(0/c) 0x00800000 FCC=Floating-Point Condition Code 0;
c=Condition bit

FS 0x01000000 Flush to zero

FCC=(1) 0x02000000 FCC=Floating-Point Condition Code 1

FCC=(2) 0x04000000 FCC=Floating-Point Condition Code 2

FCC=(3) 0x08000000 FCC=Floating-Point Condition Code 3

FCC=(4) 0x10000000 FCC=Floating-Point Condition Code 4

FCC=(5) 0x20000000 FCC=Floating-Point Condition Code 5

FCC=(6) 0x40000000 FCC=Floating-Point Condition Code 6
FCC=(7) 0x80000000 FCC=Floating-Point Condition Code 7

Using the MIPS FCSR Register

You can change the value of the MIPS FCSR register within TotalView to cus-
tomize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FCSR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FCSR to include 0x400 (as shown in
Table 65). The string displayed next to the FCSR register should now include
“enables=(Z)". Now, when your program divides by zero, it receives a SIGFPE
signal, which you can catch with TotalView. See Chapter 3 "Setting Up a

362 TotalView User’s Guide Version 4.1

Version 4.1

Architectures

MIPS

Debugging Session” on page 29 and “Handling Signals” on page 41 for more
information.

MIPS Floating-Point Format

The MIPS processor supports the IEEE floating point format.

MIPS Delay Slot Instructions

On the MIPS architecture, jump and branch instructions have a “delay slot”.
This means that the instruction after the jump or branch instruction is exe-
cuted before the jump or branch is executed.

In addition, there is a group of “branch likely” conditional branch instruc-
tions in which the instruction in the delay slot is executed only if the branch
is taken.

The MIPS processors execute the jump or branch instruction and the delay
slot instruction as an indivisible unit. If an exception occurs as a result of
executing the delay slot instruction, the branch or jump instruction is not
executed, and the exception appears to have been caused by the jump or
branch instruction.

This behavior of the MIPS processors affects both the TotalView instruction
step command and TotalView breakpoints.

The TotalView instruction step command will step both the jump or branch
instruction and the delay slot instruction as if they were a single instruction.

If a breakpoint is placed on a delay slot instruction, execution will stop at
the jump or branch preceding the delay slot instruction, and TotalView will
not know that it is at a breakpoint. At this point, attempting to continue the
thread which hit the breakpoint without first removing the breakpoint will
cause the thread to hit the breakpoint again without executing any instruc-
tions. Before continuing the thread, you must remove the breakpoint. If you
need to reestablish the breakpoint, you might then use the instruction step
command to execute just the delay slot instruction and the branch.

A breakpoint placed on a delay slot instruction of a “branch likely” instruc-
tion will be hit only if the branch is going to be taken.

TotalView User's Guide

363

C Architectures

Intel-x86

Intel-x86 General Registers

TotalView displays the Intel-x86 general registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats
each general register, and the actions you can take with each register.

Table 66: Intel-x86 General Registers

Specify in
Register Description Data Type Edit Dive Expression
EAX General registers <void> yes yes Seax
ECX <vyoid> yes yes Secx
EDX <void> yes yes Sedx
EBX <vyoid> yes yes Sebx
EBP <void> yes yes Sebp
ESP <vyoid> yes yes Sesp
ESI <void> yes yes Sesi
EDI <vyoid> yes yes Sedi
CS Selector registers <void> no no Scs
SS <void> no no Sss
DS <void> no no Sds
ES <void> no no Ses
FS <void> no no Sfs
GS <vyoid> no no Sgs
EFLAGS <void> no no Seflags
EIP Instruction pointer <code>|| no yes Seip
FAULT <void> no no Sfault
TEMP <vyoid> no no Stemp
INUM <void> no no Sinum
ECODE <void> no no Secode

364 TotalView User’s Guide Version 4.1

Version 4.1

Intel-x86 Floating-Point Registers

TotalView displays the x86 floating-point registers in the Stack Frame Pane
of the Process Window. The next table describes how TotalView treats each
floating-point register, and the actions you can take with each register.

Table 67: Intel-x86 Floating-Point Registers

Register
STO

ST1

ST2

ST3

ST4

ST5

ST6

ST7
FPCR

FPSR

FPTAG
FPIOFF
FPISEL
FPDOFF
FPDSEL

Description
ST(0)
ST(1)
T(2)
3)
4)
5)
T(6)
T(7)

Floating-point control
register

n n n n
3 3 3

)]
(@)

(
(
(
(
(
(
(

n

Floating-point status
register

Tag word
Instruction offset
Instruction selector
Data offset

Data selector

Intel-x86 FPCR Register

For your convenience, TotalView interprets the bit settings of the FPCR and
FPSR registers.

Data Type
<extended>
<extended>
<extended>
<extended>
<extended>
<extended>
<extended>
<extended>
<void>

<void>

<void>
<vyoid>
<void>
<void>
<void>

Edit
yes
yes
yes
yes
yes
yes
yes
yes

yes

no

no
no
no
no

no

Architectures

Dive
yes
yes
yes
yes
yes
yes
yes
yes
no

no

no
no
no
no

no

Intel-x86

Specify in
Expression

$st0
Sstl
Sst2
Sst3
Sst4
Sst5
Sst6
Sst7
Sfper

Sfpsr

$fptag
Sfpioff
Stpisel
Sfpdoff
Sfpdsel

TotalView User's Guide

365

C Architectures

You can edit the value of the FPCR and set it to any of the bit settings out-
lined in the next table.

Table 68: Intel-x86 FPCR Register Bit Settings

Value Bit Setting Meaning

RC=NEAR 0x0000 To nearest rounding mode

RC=NINF 0x0400 Toward negative infinity rounding mode
RC=PINF 0x0800 Toward positive infinity rounding mode
RC=ZERO 0x0c00 Toward zero rounding mode

PC=SGL 0x0000 Single precision rounding

PC=DBL 0x0080 Double precision rounding

PC=EXT 0x00c0 Extended precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=0OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero divide exception enable

EM=DM 0x0002 Denormalized operand exception enable
EM=IM 0x0001 Invalid operation exception enable

Using the Intel-x86 FPCR Register

You can change the value of the FPCR within TotalView to customize the
exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPCR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPCR to include 0x0004 (as shown in
Table 68) so that TotalView traps the “divide by zero” bit. The string dis-
played next to the FPCR register should now include EM=(ZM). Now, when
your program divides by zero, it receives a SIGFPE signal, which you can
catch with TotalView. See Chapter 3 of the TOTALVIEw USER’S GUIDE for infor-
mation on handling signals. If you did not set the bit for trapping divide by
zero, the processor would ignore the error and set the EF=(ZE) bit in the
FPSR.

366 TotalView User’s Guide Version 4.1

Architectures

Intel-x86

Intel-x86 FPSR Register

The bit settings of the Intel-x86 FPSR register are outlined in the following
table.

Table 69: Intel-x86 FPSR Register Bit Settings

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack
B 0x8000 FPU busy

Co 0x0100 Condition bit 0

Cl 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=0E 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception
EF=IE 0x0001 Invalid operation exception

Intel-x86 Floating-Point Format

The Intel-x86 processor supports the IEEE floating point format.

Version 4.1 TotalView User's Guide 367

C Architectures

368 TotalView User’s Guide Version 4.1

Version 4.1

Glossary

ACTION POINT: A debugger feature that allows a user to request that program
execution stop under certain conditions. Action points include breakpoints,
watchpoints, evaluation points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action
point.

ADDRESS SPACE: A region of memory that contains code and data from a pro-
gram. One or more threads can run in an address space. A process normally
contains an address space.

AFFECTED P/T SET: The set of threads that will be affected by the command.
For most commands, this is identical to the target p/t set, but in some cases
it may include additional threads.

AGGREGATED OUTPUT: The CLI compresses output from multiple threads
when they would be identical except for the p/t identifier.

ARENA: A specifier that indicates the processes, threads, and groups upon
which a command executes. Arena specifiers are p (process), t (thread), g
(group), d (default), and a (all).

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the
many processes that parallel and distributed programs run in, and attaches
to them automatically so you do not have to attach to them manually. This
process is called automatic process acquisition. If the process is on a remote
machine, automatic process acquisition automatically starts the TotalView
debugger server (the tvdsvr).

TotalView User's Guide

369

370

Glossary
_ barrier

BARRIER: An action point specifying that processes reaching a particular loca-
tion in the source code should stop and wait for other processes to catch

up.
BREAKPOINT: A point in a program where execution can be suspended to per-
mit examination and manipulation of data.

CALL STACK: A higher-level view of stack memory, interpreted in terms of
source program variables and locations.

CHILD PROCESS: A process created by another process (see parent process)
when that other process calls fork().

CLUSTER DEBUGGING: The action of debugging a program that is running on
a cluster of hosts in a network. Typically, the hosts are homogeneous.

COMMAND HISTORY LIST: A debugger-maintained list storing copies of the
most recent commands issued by the user.

CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms of
its dynamic context, rather than its static scope. This includes process iden-
tifier, thread identifier, frame number, and variable or subprocedure name.

CORE FILE: A file containing the contents of memory and a list of thread regis-
ters. The operating system dumps (creates) a core file whenever a program
exits because of a severe error (such as an attempt to store into an invalid
address).

CORE~FILE DEBUGGING: A debugging session that examines a core file image.
Commands that modify program state are not permitted in this mode.

CROSS~DEBUGGING: A special case of remote debugging where the host plat-
form and the target platform are different types of machines.

CURRENT FRAME: The current portion of stack memory, in the sense that it
contains information about the subprocedure invocation that is currently
executing.

CURRENT LANGUAGE: The source code language used by the file containing
the current source location.

TotalView User’s Guide Version 4.1

Glossary

dive stack

CURRENT LIST LOCATION: The location governing what source code will be
displayed in response to a list command.

DATA-SET: A set of array elements generated by TotalView and sent to the Visu-

alizer. (See visualizer process.)

DBELOG LIBRARY: A library of routines for creating event points and generat-
ing event logs from within TotalView. To use event points, you must link your
program with both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls
used by the TotalView debugger to debug multiprocess programs. If you link
your program with TotalView’s dbfork library, TotalView will be able to auto-
matically attach to newly spawned processes.

DEBUGGING INFORMATION: Information relating an executable to the source
code from which it was generated.

DEBUGGER INITIALIZATION FILE: An optional file establishing initial settings
for debugger state variables, user-defined commands, and any commands
that should be executed whenever TotalView or the CLI is invoked. Must be
called .tvdrc.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is ready
to receive another user command.

DEBUGGER SERVER: Se¢e¢ tvdsvr process.

DEBUGGER STATE: Information that TotalView or the CLI maintains in order to
interpret and respond to user commands. Includes debugger modes, user-
defined commands, and debugger variables.

DISTRIBUTED DEBUGGING: The action of debugging a program that is running
on more than one host in a network. The hosts can be homogeneous or het-
erogeneous. For example, programs written with message-passing libraries
such as Parallel Virtual Machine (PVM) or Parallel Macros (PARMACS) run on
more than one host.

DIVE STACK: A series of nested dives that were performed in the same variable
window. The number of greater than symbols (>) in the upper left-hand cor-
ner of a variable window indicates the number of nested dives on the dive

Version 4.1 TotalView User's Guide 371

372

Glossary

stack. Each time that you undive, TotalView pops a dive from the dive stack
and decrements the number of greater than symbols shown in the variable
window.

DIVING: The action of displaying more information about an item. For example,
if you dive into a variable in TotalView, a window appears with more informa-
tion about the variable.

EDITING CURSOR: A black rectangle that appears when a TotalView GUI field is
selected for editing. You use field editor commands to move the editing cur-
sor.

EVALUATION POINT: A point in the program where TotalView evaluates a code
fragment without stopping the execution of the program.

EVENT LOG: A file containing a record of events for each process in a program.

EVENT POINT: A point in the program where TotalView writes an event to the
event log for later analysis using TimeScan.

EXECUTABLE: A compiled and linked version of source files, containing a
“main” entry point.

EXPRESSION: An expression consists of symbols (possibly qualified), con-
stants, and operators, arranged in the syntax of the current source lan-
guage. Not all Fortran 90, C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example, a
Fortran array of integer(7,8) has an extent of 7 in one dimension (7 rows) and
an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView's interface. The field
editor supports a subset of GNU Emacs commands.

FOCUS: The set of groups, processes, and threads upon which a CLI command
acts. The current focus is indicated in the CLI prompt (if you are using the
default prompt).

FRAME: An area in stack memory containing the information corresponding to
a single invocation of a subprocedure.

TotalView User’s Guide Version 4.1

Glossary

mutex

FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of
source code organization is included. For variables, those levels are execut-
able or library, file, procedure or line number, and variable name.

GRIDGET: A dotted grid in the tag field that indicates you can set an action
point on the instruction.

GROUP: When TotalView starts processes, it places related processes in fami-
lies. These families are called “groups.”

HOST MACHINE: The machine on which the TotalView debugger is running.

INITIAL PROCESS: The process created as part of a load operation, or that
already existed in the run-time environment and was attached by TotalView
or the CLI.

LVALUE: A symbol name or expression suitable for use on the left-hand side of
an assignment statement in the corresponding source language. That is, the
expression must be appropriate as the target of an assignment.

LHS EXPRESSION: This is a synonym for Ivalue.

LOWER BOUND: The first element in the dimension of an array or the slice of
an array. By default, the lower bound of an array is 0 in C and 1 in Fortran,
but the lower bound can be any number, including negative numbers.

MACHINE STATE: Convention for describing the changes in memory, registers,
and other machine elements as execution proceeds.

MESSAGE QUEUE: A list of messages sent and received by message-passing
programs.

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely
available and portable MPI implementation. MPICH was written as a collab-
oration between Argonne National Lab and Mississippi State University. For
more information, see www.mcs.anl.gov/mpi.

MPMD (MULTIPLE PROGRAM MULTIPLE DATA) PROGRAMS: A program in-
volving multiple executables, executed by multiple threads and processes.

MUTEX: Mutual exclusion. A collection of techniques for sharing resources so
that different uses do not conflict and cause unwanted interactions.

Version 4.1 TotalView User's Guide 373

Glossary
_ native debugging

NATIVE DEBUGGING: The action of debugging a program that is running on the
same machine as TotalView.

NESTED DIVE WINDOW: A TotalView window that results from diving into an
item in a variable window. A nested dive window replaces the contents of
the variable window and has an undive symbol in its title bar. Diving on the
undive symbol returns the original contents of the variable window.

OUT OF SCOPE: When symbol lookup is performed for a particular symbol
name and it is not found in the current scope or any containing scopes, the
symbol is said to be out of scope.

PARALLEL PROGRAM: A program whose execution involves multiple threads
and processes.

PARCEL: The number of bytes required to hold the shortest instruction for the
target architecture.

PARENT PROCESS: A process that calls fork() to spawn other processes (usu-
ally called child processes).

PARMACS LIBRARY: A message-passing library for creating distributed pro-
grams that was developed by the German National Research Centre for
Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of
the levels of source code organization (for example, filename and proce-
dure, but not executable). This is permitted as long as the resulting name
can be associated unambiguously with a single entity.

PC: This is an abbreviation for Program Counter.

PROCESS: An executable that is loaded into memory and is running (or capable
of running).

PROCESS GROUP: A group of processes associated with a multiprocess pro-
gram. A process group includes program groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particu-
lar process and thread.

374 TotalView User’s Guide Version 4.1

Glossary

serial line debugging

PROGRAM EVENT: A program occurrence that is being monitored by TotalView
or the CLI, such as a breakpoint.

PROGRAM GROUP: A group of processes that includes the parent process and
all related processes. A program group includes children that were forked
(processes that share the same source code as the parent) and children that
were forked with a subsequent call to execve() (processes that do not share
the same source code as the parent). Contrast with share group.

PROGRAM STATE: A higher-level view of the machine state, where addresses,
instructions, registers, and such are interpreted in terms of source program
variables and statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all
processes of the target program.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for
creating distributed programs that was developed by the Oak Ridge
National Laboratory and the University of Tennessee.

RVALUE: An expression suitable for inclusion on the right-hand side of an
assignment statement in the corresponding source language. In other
words, an expression that evaluates to a value or collection of values.

REMOTE DEBUGGING: The action of debugging a program that is running on a
different machine than TotalView. The machine on which the program is run-
ning can be located many miles away from the machine on which TotalView
is running.

RESUME COMMANDS: Commands that cause execution to restart from a
stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RUNNING STATE: The state of a thread when it is executing, or at least when
the CLI or TotalView has passed a request to the underlying run-time system
that the thread be allowed to execute.

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and
the TotalView Debugger Server communicate over a serial line.

Version 4.1 TotalView User's Guide 375

Glossary

SHARE GROUP: A group of processes that includes the parent process and any
related processes that share the same source code as the parent. Contrast
with program group.

SHARED LIBRARY: A compiled and linked set of source files that are dynami-
cally loaded by other executables—and have no "main” entry point.

SIGNALS: Messages informing processes of asynchronous events, such as seri-
ous errors. The action the process takes in response to the signal depends
on the type of signal and whether or not the program includes a signal han-
dler routine, a routine that traps certain signals and determines appropriate
actions to be taken by the program.

SINGLE STEP: The action of executing a single statement and stopping (as if at
a breakpoint).

SLICE: A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful when
working with very large arrays, which is often the case in Fortran programs.

SOURCE FILE: Program file containing source language statements. TotalView
allows you to debug FORTRAN 77, Fortran 90, Fortran 95, C, C++, and
assembler.

SOURCE LOCATION: For each thread, the source code line it will execute next.
This is a static location, indicating the file and line number; it does not, how-
ever, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under
debugger control.

SPMD (SINGLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involv-
ing just one executable, executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold information
temporarily. The stack consists of a linked list of stack frames that holds
return locations for called routines, routine arguments, local variables, and
saved registers.

STACK FRAME: A section of the stack that contains the local variables, argu-
ments, contents of the registers used by an individual routine, a frame

376 TotalView User’s Guide Version 4.1

Glossary

symbol

pointer pointing to the previous stack frame, and the value of the Program
Counter (PC) at the time the routine was called.

STACK POINTER: A pointer to the area of memory where subprocedure argu-
ments, return addresses, and similar information is stored.

STACK TRACE: A sequential list of each currently active routine called by a pro-
gram and the frame pointer pointing to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program's source code that has a set
of symbols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by
source code statements.

STOP SET: A set of threads that should be stopped once an action point has
been triggered.

STOPPED/HELD STATE: The state of a process whose execution has paused in
such a way that another program event (for example, arrival of other threads
at the same barrier) will be required before it is capable of continuing exe-
cution.

STOPPED/RUNNABLE STATE: The state of a process whose execution has
been paused (for example, when a breakpoint triggered or due to some user
command) but can continue executing as soon as a resume command is
issued.

STOPPED STATE: The state of a process that is no longer executing, but will
eventually execute again. This is subdivided into stopped/runnable and
stopped/held.

STRIDE: The interval between array elements in a slice and the order in which
the elements are displayed. If the stride is 1, every element between the
lower bound and upper bound of the slice is displayed. If the stride is 2,
every other element is displayed. If the stride is —1, every element between
the upper bound and lower bound (reverse order) is displayed.

SYMBOL: Entities within program state, machine state, or debugger state.

Version 4.1 TotalView User's Guide 377

378

Glossary
_ symbol lookup

SYMBOL LOOKUP: Process whereby TotalView consults its debugging informa-
tion to discover what entity a symbol name refers to. Search starts with a
particular static scope and occurs recursively, so that containing scopes are
searched in an outward progression.

SYMBOL NAME: The name associated with a symbol known to TotalView (for
example, function, variable, data type, and such).

SYMBOL TABLE: A table of symbolic names (such as variables or functions)
used in a program and their memory locations. The symbol table is part of
the executable object generated by the compiler (with the —g switch) and is
used by debuggers to analyze the program.

TAG FIELD: The left margin in the source code pane of the TotalView process
window containing boxed line numbers marking the lines of source code
that actually generate executable code.

TARGET MACHINE: The machine on which the process to be debugged is run-
ning.

TARGET PROCESS SET: The target set for those occasions when operations
may only be applied to entire processes, not to individual threads within a
process.

TARGET PROGRAM: The executing program that is the target of debugger oper-
ations.

TARGET P/T SET: The set of processes and threads upon which a CLI com-
mand will act.

THREAD: An execution context that normally contains a set of private registers
and a region of memory reserved for an execution stack. A thread runs in an
address space.

THREAD EXECUTION STATE: The convention of describing the operations
available for a thread, and the effects of the operation, in terms of a set of
pre-defined states.

THREAD OF INTEREST: The primary thread that will be affected by a com-
mand.

TotalView User’s Guide Version 4.1

Version 4.1

Glossary

watchpoint

TRIGGER SET: The set of threads that may trigger an action point (that is, for
which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an
event to occur (such as, arriving at a breakpoint).

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates
remote debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.

UNDIVING: The action of displaying the previous contents of a window, instead
of the contents displayed for the current dive. To undive, you dive on the
undive icon in the upper right-hand corner of the window.

UPPER BOUND: The last element in the dimension of an array or the slice of an
array.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most com-
monly defined as ~ C (Ctrl-C).

VARIABLE WINDOW: A TotalView window displaying the name, address, data
type, and value of a particular variable.

VISUALIZER PROCESS: A process that works with TotalView in a separate win-
dow, allowing you to see a graphical representation of program array data.

WATCHPOINT: An action point specifying that execution should stop whenever
the value of a particular variable is updated.

TotalView User's Guide 379

Glossary

380 TotalView User’s Guide Version 4.1

Index

Symbols

Sclid intrinsic 235

Scount intrinsic 215, 217, 218,
237

Scountall intrinsic 237

Scountthread intrinsic 237

Sdebug assembler pseudo op 245

Sdenorm filter 173

$duid intrinsic 235

Shold assembler pseudo op 245

Shold intrinsic 238

Sholdprocess assembler pseudo
op 245

Sholdprocess intrinsic 238

Sholdprocessall intrinsic 238

Sholdprocessstopall assembler
pseudo op 245

Sholdstopall assembler pseudo
op 245

Sholdstopall intrinsic 238

Sholdthread assembler pseudo
op 245

Sholdthread intrinsic 238

Sholdthreadstop assembler
pseudo op 245

Sholdthreadstop intrinsic 238

Sholdthreadstopall assembler
pseudo op 245

Version 4.1

Sholdthreadstopall intrinsic 238

Sholdthreadstopprocess
assembler pseudo op
245

Sholdthreadstopprocess intrinsic
238

Sinf filter 173

Slong_branch assembler pseudo
op 245

Snan filter 173

Snanq filter 173

Snans filter 173

Sndenorm filter 173

Snewval intrinsic 227, 231, 235

Snid intrinsic 236

Sninf filter 173

Soldval intrinsic 227, 231, 236

Spdenorm filter 173

Spid intrinsic 236

Spinf filter 173

Sprocessduid intrinsic 236

Sptree assembler pseudo op 245

Sstop assembler pseudo op 245

Sstop intrinsic 203,217, 218, 232,
238

Sstopall assembler pseudo op
245

Sstopall intrinsic 238

Sstopprocess assembler pseudo

op 245
Sstopprocess intrinsic 238
Sstopthread assembler pseudo

op 245
Sstopthread intrinsic 238
Ssystid intrinsic 236
Stid intrinsic 203, 236
Svalue intrinsic 175
Svisualize 9, 105, 106, 239

examples 253
in animations 254
in expressions 254
using casts 253
%C server launch replacement

character 315
%C server launch replacement

characters 59
%D pathname replacement

character 316
%E replacement character 121
%F font name replacement

character 121
%H hostname replacement

character 316
%L host and port replacement

character 316

TotalView User's Guide

381

Index
K

%N line number replacement
character 121, 316
%P password replacement
character 316
%S source file replacement
character 121, 316
%t1 file replacement character
317
%t2 file replacement character
317
%V verbosity setting replacement
character 317
&& operator 175
. (period)
in suffix of process names 125
repeat last text search 26
.pghpfrc file 108
rthosts 77
.stb files 283
.stx files 283
Xdefaults file 275
/ (slash) search for strings 26
/proc file system 330
: (colon), in array type strings 151
: as array separator 167
<address> data type 153
<char> data type 153
<character> data type 154
<code> data type 154, 156
<complex*16> data type 154
<complex*8> data type 154
<complex> data type 154
<double precision> data type
154
<double> data type 154
<extended> data type 154
<float> data type 154
<int> data type 154
<integer*1> data type 154
<integer*2> data type 155
<integer*4> data type 155
<integer*8> data type 155
<integer> data type 155
<logical*1> data type 155
<logical*2> data type 155
<logical*4> data type 155
<logical*8> data type 155

TotalView User’s Guide

<logical> data type 155

<long long> data type 155

<long> data type 155

<real*16> data type 155

<real*4> data type 155

<real*8> data type 155

<real> data type 155

<short> data type 155

<string> data type 150, 155

<void> data type 155, 156

> (right angle bracket), indicating
nested dives 148

? (question) in shortcut key for
Help command 15

\ (backslash) search backward for
strings 26

A
—a option to totalview command
31, 46, 300
aborting field editor 25
absolute addresses, display
assembler as 118
accelerator keys 14
acquiring processes 79
at startup 69
action multiplier 22
Action Point Options dialog box
199, 203, 205, 207
deleting barrier points 208
figure 204, 208
process barrier breakpoint 207
Action Point Symbol figure 197
action points 7
action points window 278
barrier points defined 7
breakpoint defined 7
common properties 196
conditional defined 7
default is shared 290
definition 7, 196
deleting 212
disabling 211
diving into 211
enabling 212
evaluation points defined 7
ignoring 212

list of 18
loading automatically 306
machine-level 118
navigation aide 211
saving 232, 308
suppressing 212
types of 7
unsuppressing 213
using as bookmarks 211
watchpoints defined 7
Action Points list pane 18
Action Points Options dialog box
197
Action Points window 228
displaying 210
figure 210, 228
location 278
adaptor_use option 76
Address Only (Absolute
Addresses) figure 119
address range conflicts 220
address space, shared 5
addresses
changing 158
editing 158
of machine instructions 158
retracing 277
specifying in variable window
146
tracking in variable window 144
AIX
compiling on 320
linking C++ to dbfork library
325
linking to dbfork library 325
swap space 333
AIX Mutex Info Window figure 185
align assembler pseudo op 245
allocated arrays, displaying 157
Alpha
architecture 356
condition variable window 188
floating-point format 358
floating-point registers 357
FPCR register 357
general registers 356
mutex 184

Version 4.1

Ambiguous Function dialog box
201
Ambiguous Function Name Dialog
Box figure 202
ambiguous function names 201
ambiguous locations 201
ambiguous names 116
ambiguous source line 199
Ambiguous Source Line dialog
box 199
Ambiguous Source Line Selection
dialog box 198
Ambiguous Source Line Selection
Dialog Box figure 199
ambiguous source lines 133
angle brackets, in windows 148
animation using Svisualize 254
Append data to a file command
27
architectures 343
Alpha 356
HP 348
HP PA-RISC 348
Intel-x86 364
MIPS 358
PowerPC 343
SPARC 352
areas of memory, data type 156
arguments
for totalview command 299
for tvdsvr command 312
in server launch command 59,
64
passing to program 31
setting 46
Arguments/Create/Signal menu
33, 46
argy, displaying 156
Array Data Filter by Range of
Values figure 174
array data filtering 176
by comparison 172
by range of values 173
for IEEE values 173
Array Data Filtering by
Comparison figure 172

Version 4.1

Index

Array Data Filtering for IEEE
Values figure 174
array services handle (ash) 81
Array Statistics Window figure 178
arrays
Svalue special variable 175
array data filtering 171
bounds 151
character 155
checksum statistic 178
colon separators 167
count statistic 178
deferred shape 164, 167
denormalized count statistic
178
display subsection 152
displaying 166, 167
displaying allocated 157
displaying argv 156
displaying contents 23
displaying declared 157
displaying one element 170
displaying slices 167
diving into 147
editing dimension of 152
examining data of 8
extent 152
filter conversion rules 176
filter expressions 175
filtering 152, 171, 172
filtering data 176
filtering options 171
inC 151
in Fortran 151
infinity count statistic 179
laminating 181
limiting display 170
lower adjacent statistic 179
lower bound 151
lower bound of slices 167
maximum statistic 179
mean statistic 179
median statistic 179
minimum statistic 179
multidimensional slices 168
NaN statistic 179
non-default lower bounds 152

A

overlapping nonexistent mem-
ory 166

pointers to 151

quartiles statistic 179

reversed indexing of 168

skipping elements 169

skipping over elements 167

slice example 167, 169

slices with the variable com-

mand 170
sorting 176
standard deviation statistic
179

statistics 178
stride elements 167
subsections 167
sum statistic 180
type strings for 151
upper adjacent statistic 180
upper bound 151
upper bound of slices 167
visualizing 251
visualizing data 9
zero count statistic 180
arrays, sorting 171
arrow foreground color 286
arrow over line number 18
—arrow_bg_color option 300
—arrow_color option 300
arrowBackgroundColor X
resource 276
arrowForegroundColor X resource
276
ascii assembler pseudo op 245
asciz assembler pseudo op 245
ash (array services handle) 81
ask on dlopen option 339
—ask_on_dlopen option 300, 339
askOnDlopen X resource 276
ASM Button in Expression
Window figure 243
ASM icon 197, 202
ASM icon color 292
assembler
absolute addresses 118
and —g compiler option 23
constructs 242

TotalView User's Guide

383

Index
K

display symbolically 280
displaying 118
examining 118
expressions 243
in code fragment 7, 213
symbolic addresses 118
Assembler Display Mode
command 118
Assembler Only (Symbolic
Addresses) figure 119
assembler operators, TotalView
244
assembler-level action points 197
asynchronous thread control 132
at breakpoint state 40
attached process states 40
attached thread states 40
attaching
remote processes, by diving 53
remote processes, by node 52
to child processes 5
to HP MPI job 76
to MPICH application 72
to MPICH job 72
to processes 33, 34, 79
to PVM task 101
attaching to processes 33, 52, 101
attaching to relatives 35
attaching to RMS2 processes 82
attaching to SGI MPI job 81
attaching TotalView to poe 80
Auto Visualize, in Directory
Window 256
auto-launch 55, 56
auto-launch feature
changing options 289
disabling 55, 56
autoLoadBreakpoints X resource

277
automatic process acquisition 69,
71,76, 100

auto-reduce option 263

autoRetraceAddresses X resource
277

autoSaveBreakpoints X resource
277

TotalView User’s Guide

B

B state 40
background color 276, 277
background color for button 278
—background option 301
backgroundColor X resource 277
backspace key 25
BARR icon 207, 209
—barr_stop_all option 301
barrier breakpoints 138
see also breakpoints
see also process barrier break-
point
defined 7
barrier foreground font 277
barrier point 123
stopped process 210
barrier point icon color 277
barrier points 288
clearing 212
creating 208
deleting 208
disabling 209
stop all related processes 203
toggling to breakpoint 210
—barrier_color option 301
—barrier_font_color option 301
barrierFontForegroundColor X
resource 277
barrierForegroundColor X
resource 277
barrierStopAll X resource 278
base window, defined 148
baud rate, specifying 314
begin line, moving to 25
benchmarks of interpreted and
compiled expressions
219
—bg option 301
bit fields 149
black and white display 293
blindMouse X resource 278
block cursor 24
Block Distributed Array on Three
Processes figure 106
blocking send operations 88

bookmarks, usingaction points as
211
bounds for arrays 151
boxed line number 15, 18, 197
branch out instruction 218
break foreground color 278
—break_color option 301
breakFontForegroundColor X
resource 278
Breakpoint at Location command
200, 201
breakpoint files 340
Breakpoint Symbol figure 198
breakpoints
and MPI_Init() 79
apply to all threads 196
apply to processes 197
autoloading 277
automatically copied from
master process 71
behavior when reached 203
changing for parallelization
111
clearing 14, 212
conditional 213, 214, 215, 237
copy, master to slave 72
countdown 215, 237
counting down 237
default stopping action 111
defined 7, 196
deleting 212
disabling 211
enabling 212
entering 81
example of setting in a multi-
process program 206
for program group 126
fork() 205
ignoring 212
in child process 203
in multiple outlines routines 91
in parent process 203
in spawned process 100
listing 18
loading automatically 277
machine-level 118, 201
multiple processes 203

Version 4.1

not shared in separated chil-
dren 205
placing 18
poping Process window 287
process barrier 5
process barrier defined 5
reloading 78
removed when detaching 36
removing 13
saving 232, 277
set while a process is running
198
set while running parallel tasks
78
setting 13, 14, 15, 78, 197, 203
setting for HPF 108
shared by default in processes
205
sharing 5, 203, 205
stop all related processes 203
suppressing 212
thread-specific 203, 236
toggling 200
toggling to barrier point 210
breakpointWindLocation X
resource 278
bss assembler pseudo op 246
built-in statements, see intrinsics
built-in type strings 153
bulk launch 316
command 57
enabling 56
Bulk Launch Window command
56
bulk server launch 55, 56
on IBM RS/6000 62
on SGI MIPS 61
bulkLaunchBaseTimeout X
resource 278
bulkLaunchEnabled X resource
278
bulkLaunchIncrTimeout X
resource 278
bulkLaunchString X resource 278
button background color 278
—button_bg_color option 301
—button_fg_color option 301

Version 4.1

Index

buttonBackgroundColor X
resource 278

buttonForegroundColor X
resource 279

byte assembler pseudo op 246

C

C language
array bounds 151
arrays 151
file suffixes 12
filter expression 175
how data types are displayed
150
in code fragment 7, 213
in evaluation points 239
type strings
parameter in .Xdefaults file
280
type strings supported 150
C shell 331
C++
changing class types 160
demangler 303
display classes 159
in code fragment 7
including libdbfork.h 325
templates, ambiguous source
lines in 198
C+ + Type Cast to Base Class
Dialog Box figure 160
C+ + Type Cast to Derived Class
Dialog Box figure 160
call stack 18
—callback option 60, 311, 312
—callback_host 312
—callback_host option 61
—callback_ports 312
—callback_ports option 61
cancel command 14
case-sensitivity in searches 289
casting 149, 151
examples 156
to type 147
types of variable 149
CDWP, see watchpoints
ch_Ifshmem device 70

C

ch_mpl device 70
ch_p4 device 70, 72, 73, 113
ch_shmem device 70, 72
changing
global variables 129
program groups 126
values 24
variables 149
changing auto-launch options 55
Changing Process Groups Dialog
Box figure 127
char data type, retaining data as
156
character arrays 155
—chase option 301
chaseMouse X resource 279
chasing pointers 147
checksum array statistic 178
child process names 125
child processes, attaching to 5
children calling execve(), see
execve()
classes, displaying 159
Clear All STOP and EVAL
command 212
clearing
breakpoints 14, 203, 212
evaluation points 14
event points 14
CLlI, starting 12
Sclid intrinsic 235
Close All Similar Windows
command 147
Close Window command 15, 147,
235
Close, in Data Window 257
closed loop, see closed loop
closing variable windows 147
cluster debugging 52, 53, 54
cluster ID 235
code constructs supported
Assembler 242
C 239
Fortran 241
<code> data type 156, 158
code fragments 213, 235
modifying instruction path 213

TotalView User's Guide

385

386

Index
a E

when executed 213
which programming languages
213
within evaluation 7
colons as array separators 167
color
error indicators 281
EVAL icon 281
foreground 282
of text 294
of title 294
using 293
—color option 301
comm assembler pseudo op 246
command line arguments 46
passing to TotalView 31
command line option, launch
Visualizer 265
command stopping point for
groups 131
commands 30
. (Reexecute Last Search) 26
/ (Search for String) 26
\ (Search Backward for String)
26
arguments 46
Assembler Display Mode 118
Breakpoint at Location 200,
201
change Visualizer launch 250
Clear All STOP and EVAL 212
Close All Similar Windows 147
Close Window 15, 147, 235
Create Process (without start-
ing it) 129
Ctrl-? (help) 15
Ctrl-C 14
Ctrl-L 15
Ctrl-Q 15, 28
Ctrl-Q (quit) 28
Ctrl-R 15
Current Stackframe 120
Delete Program 33, 89, 142
Detach from Process 36
Display Assembler by Address
118

Display Assembler Symbolical-

TotalView User’s Guide

ly 118
dmpirun 74
dpvm 99
Duplicate Window 149
Edit Source Text 116, 121
Editor Launch String 122
Find Interesting Relative 127,
128
for Directory Window
View, Graph, Surface, File,
Delete 256
for Graph Data Window
Lines, Points, Transpose
260
Fortran Modules Window 162
Function or File 101, 115, 117,
120, 163
Global Variables Window 145
Go Group 111, 123, 129, 205
Go Process 15, 74,75,78, 111,
123,128
Go Thread 128
group or process 111
Halt Group 111, 123
Halt Process 122
Halt Thread 122
Help 15
Hold Group 124
Hold/Release Process 124, 207
input and output files 48
Input from File 48
Interleave Display Mode 118,
141
Message State Window 83
mpirun 76, 110
New Base Window 149
New Program Window 32, 33,
35, 36, 54,316
Next (instruction) 130, 135
Next (instruction) Group 135
Next (instruction) Thread 135
Next (source line) 130, 135
Next (source line) Group 135
Next (source line) Thread 135
Next Group 111
Open Action Points Window
210, 228

Open Expression Window 233

Output to File 48

pghpf 109

poe 71, 77, 107

prun 81

pvm 97, 99

Quit Debugger 28

Reexecute Last Save Window
27

Release Group 124, 207

Reload Executable File 33

Reset View 264

Restart Program 142

Return (out of function) 137

Return (out of function) Group
137

rsh 63, 77

Run (to selection) 111, 130,
132,135

Run (to selection) Group 136

Run (to selection) Thread 136,
137

Save All Action Points 233

Save Window to File 27

Server Launch Window 55, 58

server launch, arguments 59

Set Command Arguments 46

Set Continuation Signal 36,
140

Set Environment Variables 47

Set PC to Absolute Value 141

Set PC to Selection 141

Set Process Program Group
127

Set Search Directory 32, 35,
44,98, 273, 289

Set Signal Handling Mode 43,
98, 99

shift-return 15

Show All Process Groups 125,
127

Show All PVM Tasks 101

Show All Unattached Process-
es 33, 34

Show Event Log Window 48

single-stepping 133

Source Display Mode 118

Version 4.1

Step (instruction) 130, 134
Step (instruction) Group 134
Step (instruction) Thread 134
Step (source line) 130, 134
Step (source line) Group 129,
130, 134
Step (source line) Thread 134
Step Group 111
Suppress All Action Points 212
Toggle Laminated Display 180
Toggle Thread Laminated Dis-
play 180
totalview 12, 30, 74, 78, 80
command-line options 275
core files 30, 36
syntax and use 299
totalviewcli 12, 31
tvdsvr 55, 289
launching 59
syntax and use 311
Unsuppress All Action Points
213
Update Process Info 123, 138
Update PVM Task List 101
Variable 93, 144, 145, 170
Visualize 9, 252
visualize 250, 265
Visualize Distribution 106
Visualize ownership informa-
tion 106
xrdb 274, 275

common block

displaying 161

diving on 161

if composite object 162

initial address of 162

members have function scope
161

Multiple tag 162

Compaq Tru64 UNIX

/proc file system 330
Condition Variable Data Win-

dow figure 189
linking to dbfork library 326
swap space 332

Compagq Tru64 UNIX Mutex Info

Window figure 184

Version 4.1

Index

compiled expressions 217, 218
allocating patch space for 220
benchmarks 219
benefits of 219
performance 217

compileExpressions X resource

279

—compiler_vars option 302

compilers
KCC 284
mpcc_r 82
mpxlf_r 82
mpxIf90_r 82

compilerVars X resource 279

compiling
considerations 30
debugging symbols 319
—g compiler option 11, 30, 319
HPF code 109
multiprocess programs 29
—O option 30
on Compaq Tru64 UNIX 321
on HP-UX 321
on IRIX 322
on SunOS 323
optimization 30
options 319
programs 11, 29

switch, library 29
recompiling 33
compound objects 153
Condition Variable Info Window
188

condition variables 188
address of 190
flags 189
information window 279
mutex guard 190
name of 190
process shared value 189
sequence number 189
waiters value 190

Condition Variables window 188

conditional breakpoints 213, 214,

215, 237
defined 7

C

conditional watchpoints, see
watchpoints

conditionVariableInfoWindLocati

on X resource 279
configure command 70

configuring for the Visualizer 249

connection directory 316
connection timeout 56, 58
connection timeout, altering 55
console output for tvdsvr 313
contained functions 163
context-sensitive help 10
continuing with a signal 139
contour lines 263

contour option 263

contour settings 262

control buttons for navigation 18,

19
control registers 122
interpreting 122
conversion rules for filters 176
copy and paste text 24
copying between windows 24

copying text between windows 24
core dump, naming the signal that

caused 37

core files

examining 6, 36

in totalview command 30, 36
correcting programs 216
count array statistic 178
Scount intrinsic 237
Scountall intrinsic 237

countdown breakpoints 215, 237

Scountthread intrinsic 237
CPU registers 122
cpu_use option 76
Create Process (without starting
it) command 129
creating groups 129
creating processes 46, 128
and starting them 128
errors 270
new 32
using Step (source line) 130
without starting them 129
crossed-arrow cursor 19

TotalView User's Guide

387

Index
B

crt0.o0 module 101 data assembler pseudo op 246 debugger server 55, 289, 311
Ctrl-? keypath 15 data pane, laminated 183 see also, tvdsvr
Ctrl-A keypath 25 data size limit in C shell 331 Debugger Unique ID (DUID) 235
Ctrl-B keypath 25 data types debugging
Ctrl-C keypath 14, 25, 112 see also TotalView data types distributed programs 9
Ctrl-D keypath 25 <string> 150 executable file 30
Ctrl-E keypath 25 C++ 159 HPF code 110, 305
Ctrl-F keypath 25 changing 8, 149 multiprocess programs 30
Ctrl-H keypath 25 changing class types in C++ not compiled with —g 12
Ctrl-K keypath 25 160 OpenMP applications 89
Ctrl-L keypath 15 chars, retaining as 156 programs that call execve 30
Ctrl-N keypath 22, 25 for visualization 251 programs that call fork 30
Ctrl-O keypath 25 int 150 PVM applications 96
Ctrl-P keypath 22, 25 int* 150 QSW RMS2 81
Ctrl-Q keypath 15, 28 int[] 150 remote processes 51
Ctrl-R command 15 opaque data 157 SHMEM library code 103
Ctrl-R keypath 15 pointers to arrays 151 Debugging a Distributed Program
Ctrl-U keypath 22, 25 predefined 153 with TotalView, figure 2
Ctrl-V keypath 24, 25 to visualize 251 Debugging a Remote Program,
Ctrl-Z keypath 112 user-defined 161 figure 2
cTypeStrings X resource 280 data watchpoints, see watchpoints debugging Fortran modules 162
current data size limit 334 data window 256 debugging PVM applications 97
current location of program scaling 260 debugging setuid programs 272
counter 18 translating 261 declared arrays, displaying 157
current stack frame 120 Visualizer, display commands decw$sm_general.dat 275
Current Stackframe command 258 def assembler pseudo op 246
120 zooming 261 default address range conflicts
current working directory 44, 45 data*pick_message.background 220
Current/Update/Relatives menu X resource 296 default font 282
120, 123, 127 dataset deferred shape array definition
cursor deleting 256 167
deleting character at 25 dimensions 267 deferred shape array types 164
focus 31 for Visualizer 251 delay slot instructions for MIPS
moving backwards 25 header fields 266 363
moving to next line 25 ID 267 delete key 25
moving up a line 25 selecting 256 Delete Program command 33, 89,
to beginning of line 25 showing parameters 264 142
customizing TotalView 275 vh_axis_order field 267 Delete, in Data Window 257
dataWindLocation X resource 280 deleting
D dbfork library 30, 205 a character 25
d_process object 330 linking with 30, 324 action points 212
data syntax 302 character 25
displaying 8 —dbfork option 302 datasets 256
examining 8 deadlocks, message passing 82 processes 214
manipulating 8 Sdebug assembler pseudo op 245 programs 142
surface data, manipulation 264 —debug, using with MPICH 89 —demangler option 303
viewing, from Visualizer 258 —debug_file option 302, 313 denorm filter 173

388 TotalView User’s Guide Version 4.1

denormalized count array statistic
178
DENORMs 171
Detach from Process command
36
detaching from processes 36
detaching removes all
breakpoints 36
dialogs
behavior of 279, 305
location of 301
dimmed information, in the root
window 138
Dimmed Process Information in
the Root Window figure
139
directories, setting order of
search 44
directory search path 98
Directory Window, menu
commands 256
directory*auto_visualize.set X
resource 296
Directory, in Data Window 257
directory.width X resource 296
disabling
action points 211
auto-launch feature 55, 56, 63,
289
barrier points 209
PVM support 98, 99, 281, 288,
308
disassembly, in variable window
158
discard mode for signals 44
Display Assembler by Address
command 118
Display Assembler Symbolically
command 118
Display of Random Data figure
261
—display option 303
Display/Directory/Edit menu 79,
121,122
displayAssemblerSymbolically X
resource 280
displaying 23

Version 4.1

Index

Action Points window 210
areas of memory 146
argv array 156
array data 23
arrays 166, 167
common blocks 161
data 8
declared and allocated arrays
157
Fortran data types 161
Fortran module data 162
global variables 145
HPF distributed array node 305
machine instructions 147, 158
memory 146
mutex information, see mutexes
pointer 23
pointer data 23
registers 143
remote hostnames 16
stack trace pane 23
structs 152
subroutines 23
thread objects 183
typedefs 152
unions 153
variable 23
variable windows 143
Displaying C+ + Classes that Use
Inheritance figure 159
Dist (distributed) indicator 105
distributed debugging 9
see also PVM applications
remote processes 51
remote server 55
Dive button 13
dive mouse button 23
dive stack 148
diving 23, 79
always opening a new window
when 18
definition 148
in a laminated pane 182
in a variable window 147
in source code 116
into a pointer 23, 147
into a process 23

D

into a stack frame 23
into a structure 147
into a thread 23
into a variable 23
into an action point 211
into an array 147
into formal parameters 143
into Fortran common blocks
161
into function name 116
into functions 8
into global variables 145
into local variables 143
into MPI buffer 86
into MPI processes 85
into parameters 143
into process group 125
into processes 20, 34
into PVM tasks 101
into registers 143
into threads 18, 20
into variables 8
nested 23
nested dive defined 147
opening a new window 20
replacing contents 148
shift key creates duplicate win-
dow 149
Diving into Common Block List in
Stack Frame Pane figure
161
Diving into Local Variables and
Registers figure 144
DLL Do Query on Load list 280,
339
DLL Don’t Query on Load list 280,
339
dllignorePrefix X resource 280
dlIStopSuffix X resource 280
dlopen 338
dlopen Dialog Box figure 339
DMPI 82
dmpirun command 74
double assembler pseudo op 246
down-arrow key 21, 22
DPVM
see also PYM

TotalView User's Guide

389

Index
B H

enabling support for 99
must be running before Total-
View 99
starting session 99
dpvm command 99
—dpvm option 99, 303, 313
dpvm option 99
DPVMDebugging X resource 281
DUID 235
of process 236
Sduid intrinsic 235
—dump_core option 303
Duplicate Window command 149
dynamic libraries, debugging in
PVM 102
dynamic library support
limitations 340
—dynamic option 303
dynamic patch space allocation

220

dynamically linked, stopping after
start() 101

dynamically loaded libraries 107,
338

E

E state 40

Edit Source Text command 116,
121

editing

addresses 158
laminated pane 183
source text 121
text 24
type strings 149
editing compound objects or
arrays 153
Editing Cursor figure 24
EDITOR environment variable 121
editor launch string 121
changing 122
default 121
replacement characters 121
Editor Launch String command
122
editor, exiting from 15

TotalView User’s Guide

editorLaunchString X resource
281
ELOG icon 13
for event points 14
enabling
action points 212
PVM support 98, 99, 281, 288,
308
end line, moving to 25
environment variables 46
adding new ones to environ-
ment 47
before starting poe 77
EDITOR 121
LD LIBRARY PATH 326, 327,
328
MP_ADAPTOR_USE 77
MP_CPU_USE 77
MP_EUIDEVELOP 87
PGI 107
TVDSVRLAUNCHCMD 59
equiv assembler pseudo op 246
error indicator color 281
error state 40, 41
—error_color option 304
errorFontForegroundColor X
resource 281
errors 269
in multiprocess program 43
EVAL (Evaluate Expression)
button 214
Eval button 234
EVAL icon 13
color 281
for evaluation points 14
EVAL icon, for evaluation points
14
EVAL point, see evaluation points
—eval_color option 304
evalForegroundColor X resource
281
evaluating an expression in a
watchpoint 223
evaluating expressions 233
evaluation points 213
assembler constructs 242
C constructs 239

clearing 14
commands 237
controlling 222
defined 7, 196
defining 213
examples 215
Fortran constructs 241
HPF restriction 105
listing 18
lists of 18
machine level 118, 213
saving 214
setting 14, 214
where generated 213
evalWindLocation X resource 281
event log 5
window 48, 281
window location 281
Event Log window figure 49
event points
clearing 14
listing 18
setting 14
eventLogWindLocation X
resource 281
examining
core files 36
process groups 125
source and assembler code
118
stack trace and stack frame
143
status and control registers
122
examining data 8
examining processes 124
Example of Program Groups and
Share Groups figure 125
exception data on Compagq Tru64
324
exception enable modes 122
executables
debugging 30
loading 32
reloading 33
executing
out of function 137

Version 4.1

to a selected line 135
to the completion of a function
137
execution context, private 5
execution stack, thread private 6
execve() 5, 30, 33, 124, 125, 205,
324
attaching to processes 33
call failed 270
debugging programs that call
30
failure of 270
setting breakpoints with 205
exit command 15
Exit, from Visualizer 256
exiting from editor 15
exiting TotalView 28
expression evaluation window
compiled and interpreted ex-
pressions 217
discussion 233
location 281
expression system
AIX 341
Alpha 342
IRIX 342
expressions 204
benchmarks for compiling and
interpreting 219
benefit of compilation 219
can contain loops 235
compiled 218
evaluating 233
expressions, performance of 217
expressions, using 7
—ext option 304
extent of arrays 152

F

f77. generated 109
fatal errors 331
—fg option 304
field editor 25
aborting 25
closing 25
copy and pasting text 24
deleting next character 25

Version 4.1

deleting previous character 25
ending session 15

kill line command 25

moving back a character 25
moving to beginning of line 25
moving up a line 25

multiplier 25

next line command 25

open line command 25

pasting 25
return key 25
tab 26
fields, scrolling 22
Figures
Sort Items on the Process Pop
Up Menu 177
figures
Action Point Options Dialog
Box 204, 208

Action Point Symbol 197

Action Points Window 210, 228

Address Only (Absolute Ad-
dresses) 119

AIX Mutex Info Window 185

Ambiguous Function Name Di-
alog Box 202

Ambiguous Source Line Selec-
tion Dialog Box 199

Array Data Filter by Range of
Values 174

Array Data Filtering by Com-
parison 172, 174

Array Statistics Window 178

ASM Button in Expression Win-
dow 243

Assembler Only (Symbolic Ad-
dresses) 119

Block Distributed Array on
Three Processes 106

Breakpoint Symbol 198

C++ Type Cast to Base Class
Dialog Box 160

C+ + Type Cast to Derived
Class Dialog Box 160

Changing Process Groups Dia-
log Box 127

Compaq Tru64 Unix Condition

Index

F

Variable Data Win-
dow 189

Compaq Tru64 UNIX Mutex
Info Window 184

Debugging a Distributed Pro-
gram with TotalView
2

Debugging a Remote Program
with TotalView 2

Dimmed Process Information
in the Root Window
139

Display of Random Data 261

Displaying C+ + Classes that
Use Inheritance 159

Diving into Common Block List
in Stack Frame Pane
161

Diving into Local Variables and
Registers 144

dlopen Dialog Box 339

Editing Cursor 24

Event Log window 49

Example of Program Groups
and Share Groups
125

Fortran 90 Pointer Value 166

Fortran 90 User Defined Type
164

Fortran Array with Inverse Or-
der and Limited Ex-
tent 170, 171

Fortran Modules Window 163

Function Name Dialog Box 116

Input from File dialog box 48

Interleaved Source/Assembler
(Absolute Addresses)
120

Key Data Window 194

Key List Window 193

Laminated Array and Structure
182

Laminated Scalar Variable 181

Laminated Variable at Different
Addresses 182

Message State Pending Re-
ceive Operation 86

TotalView User's Guide 391

392

Index
B H

Message State Pending Send
Operation 88

Message State Unexpected
Message 87

Message State window 84

Mutex Data Window on Com-
paq Tru64 UNIX 185

Nested Dives 148

New Program Window Dialog
Box 35

OpenMP THREADPRIVATE
Common Block Vari-
able 95

Parallel Tasks dialog box 78

Pop-up Menu and Submenu 14

Process Barrier Breakpoint in
Process and Root
Windows 209

Process Groups Window 126

Process Window 17

Process Window Navigation
Control 18, 19

Processes that TotalView
doesn't own 72

PVM Tasks and Configuration
Window 102

Read-Write Lock Data Window
193

Read-Write Lock Info

Window 191

Resolving Ambiguous Function
Names Dialog Box
117

Resolving Ambiguous Source
Line Dialog Box 133

Root window 16

Root Window Showing Process
and Thread Status 39

Sample Expression Window
234

Sample OpenMP Debugging
Session 92

Sample TotalView Session 4

Sample Visualizer Data Win-~
dows 257

Sample Visualizer Directory
Window 255

TotalView User’s Guide

Scroll bar 21

Set Command Arguments dia-
log box 46

Set Handling Mode Command
dialog box 43

Set Search Directory dialog
box 45

SHMEM Sample Session 104

Single Process Group Window
126

Sizing Cursor 19

Slice Displaying the Four Cor-~
ners of an Array 169

Sort Window 177

Spelling Corrector Dialog Box
26

Stopped Execution of Com-
piled Expressions
218

Stopping Spawned Processes
dialog box 72

Three Dimensional Array Sliced
to Two Dimensions
251

Three Dimensional Surface Vi-
sualizer Data Display
263

Toggle Breakpoint at Location
Dialog Box 201

TotalView Debugger Server 10

TotalView Visualizer Connec-
tion 248

TotalView Visualizer Relation-
ships 249

Two Dimensional Surface Visu-
alizer Data Display
262

Variable Menu 225

Variable Window 252

Variable Window for Area of
Memory 146

Variable Window with Machine
Instructions 147

Visualizer Graph Data Window
260

Visualizer Launch Window 250

Visualizer Windows 255

Watchpoint Options Dialog
Box 226

—file option 250
—file option to Visualizer 265
files

.pghpfrc 108

rthosts 77

.stb 283

.stx 283

Xdefaults 275

hosts.equiv 77

libdbfork.h 325

license.dat 271

visualize.h 266
fill assembler pseudo op 246
filter expression, matching 171
filtering

array data 171, 176

array expressions 175

by range of values 173

comparing types of 175

conversion rules 176

example 172

in sorts 177

options 171
filters

Sdenorm 173

Sinf 173

Snan 173

Snanqg 173

Snans 173

Sninf 173

Spdenorm 173

Spinf 173
Find Interesting Relative

command 127, 128

finding

active processes 127

functions 115

interesting relatives 127

source code 115, 117

source code for functions 115
float assembler pseudo op 246
floating-point format

Alpha 358

Intel-x86 367

MIPS 363

Version 4.1

PowerPC 348
SPARC 351, 355
—fn option 304
font 282
—font option 304
font X resource 282
fonts, in .Xdefaults file 282
for loop 235
foreground (text) color 282
foreground color 276
arrow 286
foreground color for break 278
foreground font for barrier 277
—foreground option 304
foregroundColor X resource 282
fork() 5, 30, 124, 205, 324
debugging programs that call
30
setting breakpoints with 205
Fortran
array bounds 151
arrays 151
common blocks 161
contained functions 163
data types, displaying 161
debugging modules 162
deferred shape array types 164
file suffixes 12
filter expression 175
identifying version 12
in code fragment 7, 213
in evaluation points 241
module data, displaying 162
modules 162
pointer types 165
type strings supported by To-
talView 150
user defined types 164
Fortran 90 Pointer Value figure
166
Fortran 90 User Defined Type
figure 164
Fortran Array with Inverse Order
and Limited Extent
figure 170
Fortran Modules Window
command 162

Version 4.1

Index

Fortran Modules Window figure
163
forward a character 25
frame pointer 136, 137
frameOffsetX X resource 282
frameOffsetY X resource 282
Function Name Dialog Box figure
116
Function or File command 101,
115,117,120, 163
Function/File/Variable menu 93,
94, 145, 162
functions
finding 115
returning from 137
searching for 8

G
—g compiler option 11, 23, 30,
109, 274
generating a symbol table 30
global assembler pseudo op 246
global variables
changing 129
displaying 129
diving into 145
window location 282
window location syntax 282
Global Variables window 162
Global Variables Window
command 145
—global_types option 304
globalsWindLocation X resource
282
globalTypenames X resource 282
Go Group command 111, 123,
129, 205
Go Process command 15, 74, 75,
78,80,81, 111,123,128
Go Thread command 128
Go/Halt/Step/Next/Hold menu
122,124,128, 130, 205,
207
goto statements 213
—grab option 31, 274, 305
—grab_server option 305
grabbing they keyboard 31

G

grabMouse X resource 283
Graph Data Window 259
commands 260
Graph visualization menu 256
graph window, creating 256
graph*lines.set X resource 296
graph*points.set X resource 296
Graph, in Directory Window 256
graph.width X resource 296
graphs
manipulating, in Visualizer 260
two dimensional 259
gridget 119, 201
groups 97
see also processes
creating 129
definition 129
examining 124
halting 123
holding processes 124
releasing processes 124
single-stepping 5
starting 129

H

half assembler pseudo op 246
Halt Group command 111, 123
Halt Process command 122
Halt Thread command 122
handler routine 41
handling signals 41, 43, 98, 99,
290, 309

header fields for datasets 266
height, of panes 285
held processes 128

defined 206
Help command 10, 15
Help window

displaying 15

location 283
help window

location 283
helpWindLocation X resource 283
hexadecimal address, specifying

in variable window 146

hil6 assembler operator 244
hi32 assembler operator 244

TotalView User's Guide

393

_ i
I

hold and release 123
Shold assembler pseudo op 245
Hold Group command 124
Shold intrinsic 238
hold process 124
hold state 124
Hold/Release Process command
124, 207
holding processes 5, 129
Sholdprocess assembler pseudo
op 245
Sholdprocess intrinsic 238
Sholdprocessall intrinsic 238
Sholdprocessstopall assembler
pseudo op 245
Sholdstopall assembler pseudo
op 245
Sholdstopall intrinsic 238
Sholdthread assembler pseudo
op 245
Sholdthread intrinsic 238
Sholdthreadstop assembler
pseudo op 245
Sholdthreadstop intrinsic 238
Sholdthreadstopall assembler
pseudo op 245
Sholdthreadstopall intrinsic 238
Sholdthreadstopprocess
assembler pseudo op
245
Sholdthreadstopprocess intrinsic
238
host machine, defined 10
host ports 312
hostname
abbreviated in root window 16
for tvdsvr 31, 51, 53, 312
in root and process windows
37
in square brackets 16
replacement 316
hostname expansion 316
hosts.equiv file 77
how TotalView determines share
group 127
HPF
applications 104

TotalView User’s Guide

compiling for debugging 109
debugging 110
display node of array element
283
Dist (distributed) indicator 105
enable debugging at source
level 283
evaluation points restriction
105
MPICH 108
Rep (replicated) 1 105
search order 107
setting breakpoints 108
starting programs 109
starting TotalView 106
starting with MPICH 110
~hpf option 283, 305
hpf X resource 283
—hpf_node option 305
hpfNode X resource 283
HP-UX
architecture 348
shared libraries 338
swap space 333

I

[state 40

IBM MPI 76

IBM SP machine 70, 71

—icc option 305

idle state 40

—ignore_control_coption 89, 272,
305

ignoring action points 212

indexing, reversed 168

indicator 34

inet interface name 293

inf filter 173

infinite loop, see loop, infinite

infinity count array statistic 179

INFs 171

input files, setting 48

Input from File command 48

Input from File dialog box figure
48

instructions

data type for 156

displaying 147, 158
int data type 150
int* data type 150
int[] data type 150
Intel-x86
architecture 364
floating-point format 367
floating-point registers 365
FPCR register 365
using 366
FPSR register 367
general registers 364
interesting relatives, how
determined 128
interface name for server 293
interleave display mode 118
Interleave Display Mode
command 118
interleaved source 202
Interleaved Source/Assembler
(Absolute Addresses)
figure 120
interpreted expressions 217
benchmarks 219
performance 217
intrinsics 235
Sclid 235
Scount 215, 217, 218, 237
Scountall 237
Scountthread 237
$duid 235
Shold 238
Sholdprocess 238
Sholdprocessall 238
Sholdstopall 238
Sholdthread 238
Sholdthreadstop 238
Sholdthreadstopall 238
Sholdthreadstopprocess 238
Snewval 235
Snid 236
Soldval 236
Spid 236
Sprocessduid 236
$stop 203, 217, 218, 238
Sstopall 238
Sstopprocess 238

Version 4.1

Sstopthread 238
Ssystid 236
Stid 203, 236
Svalue 175
Svisualize 9, 239
defined 213
forcing interpretation 217, 236
inverse video 284
inverseVideo X resource 284
inverting array order 169
IP over the switch 76
IRIX
/proc file system 330
linking to dbfork library 327
swap space 335
—iv option 306

J
job_t::launch 330

K

K state, unviewable 40
—kec_classes option 306
kccClasses X resource 284
KeepSendQueue, option 88
kernel 40
Key Data Window figure 194
Key Info Window command 193
Key List Information window 193
Key List Window figure 193
keyboard commands 14
keyboard focus 31
keyboard shortcuts 14
keys

arrow keys 21

contents of 194

Ctrl-? 15

Ctrl-A 25

Ctrl-B 25

Ctrl-C 14, 25, 112

Ctrl-D 25

Ctrl-E 25

Ctrl-F 25

Ctrl-H 25

Ctrl-K 25

Ctrl-L 15

Ctrl-N 22

Version 4.1

Index

Ctrl-O 25
Ctrl-P 22, 25
Ctrl-Q 15, 28
Ctrl-R 15
Ctrl-U 22, 25
Ctrl-V 24, 25
Ctrl-Z 112
remapping 341
scroll 21
sequence number 194
shift-dive 18, 20
shift-return 15
system TID 194
keysym 341
kill line command 25
—ksq option 88

L
labels, for machine instructions
158
Laminated Array and Structure
figure 182
Laminated Scalar Variable figure
181
Laminated Variable at Different
Addresses figure 182
laminated variables 180
laminating data pane 183
lamination
arrays and structures 181
data panes and Visualizer 252
defined 8
diving in pane 182
editing a pane 183
variables 8, 180
launch
configuring Visualizer 249
options for Visualizer 249
string for Visualizer 294
syntax tvdsvr 289
TotalView Visualizer from com-
mand line 265
tvdsvr 55, 289, 311
—Ib option 306
Icomm assembler pseudo op 246
left margin area 18
left mouse button 13, 20

J

libdbfork.a 324
libdbfork.h file 325
libraries
dbfork 30, 302
debugging SHMEM library
code 103
dynamic 102
libtvhpf.so 107
loading dynamic 107
search order 107
shared 303, 337
libtvhpf.so library 107
license manager problems 272
license.dat file 271
license.dat, see also TotalView
Installation Guide
limiting array display 170
line most recently selected 138
line numbers 18
boxed 15
linking to dbfork library 324
AIX 325
C++ and dbfork 325
Compaq Tru64 UNIX 326
IRIX 327
SunQOS 5 327
Linux
swap space 336
lists of processes 15
lists of threads 15
LM_LICENSE_FILE environment
variable 271
Imgrd 271
lo16 assembler operator 245
1032 assembler operator 245
load and loadbind 338
loading
action points 277, 306
file into TotalView 31
new executables 32, 51
local hosts 31
Slong_branch assembler pseudo
op 245
loop infinite, see infinite loop
lower adjacent array statistic 179
lower bounds 151
non default 152

TotalView User's Guide

395

Index
s N

of array slices 167
lysm TotalView pseudo op 246

M
M state 41
machine instructions
data type 156
data type for 156
displaying 147, 158
main() 101
stopping before entering 100
mainHSplit X resource 284
mainHSplit1 X resource 285
mainHSplit2 X resource 285
mainVSplit X resource 285
mainVSplitl X resource 285
mainVSplit2 X resource 285
mainWindLocation X resource
285
manipulating data 8
manual hold and release 123
marking source lines 211
master process, recreating slave
processes 112
master thread 90
OpenMP 91, 95
stack 93
matching stack frames 181
maxdsiz_64 334
maximum array statistic 179
maximum data segment size 334
—mc option 306
mean array statistic 179
median array statistic 179
memory
displaying areas of 146
out of, error 272
memory locations, changing
values of 149
Menu button 13
menu commands 14
shortcut keys 14
—menu_arrow_color option 306
menuArrowForegroundColor X
resource 286
menuCache X resource 286
menus

TotalView User’s Guide

blank menus 306
caching 306
customizing behavior of 288
displaying 13
walking 288
mesh option 262
message passing deadlocks 82
Message Passing Interface, see MPI
Message Passing
Interface/Chameleon
Standard, see MPICH
Message Passing Toolkit 82
message queue display 80, 82, 89
message queues 69
Message State Pending Receive
Operation figure 86
Message State Pending Send
Operation figure 88
Message State Unexpected
Messages figure 87
Message State Window
command 83
Message State window 83
figure 84
Message State Window command
83
message state window location
286
message tags, reserved 102
—message _queue option 306
message-passing programs 111
messages
envelope information 87
operations 84
reserved tags 102
troubleshooting 269
unexpected 87
verbosity 294
messageStateWindLocation X
resource 286
meta-down-arrow keypath 21
meta-up-arrow keypath 21
middle mouse button 13
minimum array statistic 179
MIPS
architecture 358
delay slot instructions 363

FCSR register 361
using 362
floating-point format 363
floating-point registers 361
general registers 358
SR register 360
mixed state 41
—Mkeepftn option 109
mkswap command 336
mmap() system call 220
modify watchpoints, see
watchpoints
modifying code behavior 213
modules 162
debugging, Fortran 162
displaying Fortran data 162
window location 286
modulesWindLocation X resource
286
monitoring TotalView sessions 48
mounting /proc file system 330
mouse button
diving 13
left 13
menu 13
middle 13
right 8, 13
selecting 13
mouse buttons, using 13
mouse grabbing 283
—mouse_bg_color option 307
—mouse_fg color option 307
mouseCursorBackgroundColor X
resource 286
mouseCursorForegroundColor X
resource 286
moving cursor to end of line 25
moving down a line 22
moving forward a character 25
moving up a line 22
MP_ADAPTOR_USE environment
variable 77
MP_CPU_USE environment
variable 77
MP_EUIDEVELOP environment
variable 87
mpcc_r compilers 82

Version 4.1

MPI 69
acquiring processes at start-up
69
attaching to 81
attaching to HP job 76
attaching to running job 74
buffer diving 86
communicators 83
library state 83
library, internal state 83
MPI-2 communicator not im-~
plemented 83
on Compaq Alpha 74
on HP machines 75
on IBM 76
on SGI 80
process diving 85
processes, starting 81
starting on Compaq 74
starting on SGI 80
starting processes 74, 80
troubleshooting 88
MPI communications library 108
MPI_Comm_size() 83
MPI_COMM_WORLD() 83
MPI_Init() 71, 79, 83
MPI_NAME_GET() 83
MPI_NAME_PUT() 83
MPICH 69, 70, 76
and SIGINT 89
and the TOTALVIEW environ-
ment variable 71
attach from TotalView 72
attaching to 72
ch_Ifshmem device 70, 72
ch_mpl device 70
ch_p4 device 70, 72, 73
ch_shmem device 72
ch_smem device 70
configuring 70
copy of 70
diving into process 72
HPF 108
MPICH/ch_p4 113
mpirun command 71
obtaining 70
on workstation clusters 110

Version 4.1

Index

P4 73
—p4psg files 73
starting TotalView using 71
starting using HPF 110
—tv option 71
using —debug 89
mpirun command 71, 76, 110
options to TotalView through
112
passing options to 112
mpirun process 81
MPL_Init() 79
and breakpoints 79
mpxlf_r compiler 82
mpxIf90 r compiler 82
-mqd option 306
MQD, see message queue display
—Mtotalview option 109, 274
—Mtv option 109
—mult_color option 307
multForegroundColor X resource
286
multiline fields, scrolling 22
multiple classes, resolving 116
multiple outlined routines 91
multiple symbol tables 5
multiplier for key actions 22
multiplier keypath prefix 25
multiprocess programming library
30
multiprocess programs
and signals 43
attaching to 35
compiling 29
finding active processes 127
process groups 124
setting and clearing break-
points 203
multithreaded programs 5
Mutex Data Window on Compaq
Tru64 UNIX figure 185
Mutex Info Window command 184
Mutex Information window 184
mutexes
data window 185
flags 186
guard for condition variables

N

190
lock state 187
memory address 187
name of 188
owner 187
process shared value 187
sequence numbers 185
states 184
type 185
using to synchronize 191
window 184
mutexWindLocation X resource
287
mutual exclusion objects 191
mutually recursive functions 137

N

—n option, of rsh command 64
names, of processes in process
groups 125

naming rules
for program groups 125
for share groups 125
naming the host 312
NaN array statistic 179
nan filter 173
nanq filter 173
NANs 171
NaNs 173
nans filter 173
navigating
source code 120
navigation 211
navigation control buttons 18, 19
navigation in root window 20
—nc option 301
ndenorm filter 173
nested dive 23
nested dive window 148
nested dive, defined 147
Nested Dives figure 148
network debugging 9
New Base Window
command 149
in Data Window 257

TotalView User's Guide 397

398

Index

_F

New Program Window command
31, 32, 33, 35, 36, 54,
316

New Program Window Dialog Box
figure 35

Next (instruction) command 130,
135

Next (instruction) Group
command 135

Next (instruction) Thread
command 135

Next (source line) command 130,
135

Next (source line) Group
command 135

Next (source line) Thread
command 135

Next Group command 111

—nicc option 305

Snid intrinsic 236

ninf filter 173

—-nlb option 233, 306

—nmc option 306

—no_ask_on_dlopen option 300,
339

—no_barr_stop_all option 111,
301

—no_chase option 301

—no_color option 301

—no_compiler_vars option 302

—no_dbfork option 302

—no_dpvm option 99, 303

—no_dump_core option 303

—no_dynamic option 304, 337

—no_global types option 305

—no_grab option 305

—no_grab_server option 305

—no_hpf option 109, 283, 305

—no_ignore_control_c option 305

—no_iv option 306

—no_kecc_classes option 306

—no_message queue option 306

—no_maqd option 306

—no_parallel option 307

—no_pop_at_breakpoint option
307

—no_pop_on_error option 307

TotalView User’s Guide

—no_pvm option 98, 99, 308
—no_stop_all option 71, 111, 309
—no_tc option 309
—no_text_color option 309
—no_title_color option 309
—no_user_threads option 309
node ID 236

node, attaching from to poe 79
nodes, HPF 283

—npr option 308

-nsb option 308

0]
—O option 30
offset of window locations 282
offsets, for machine instructions
158
Soldval intrinsic variable 236
omitting array stride 168
opaque type definitions 157
Open (or raise) process window at
breakpoint checkbox 43
Open (or raise) Process window
on error checkbox 43
Open Action Points Window
command 210, 228
Open Expression Window
command 233
open line field editor command
25
OpenMP 89, 91
debugging applications 89
master thread 90, 91, 95
master thread stack context 93
on Compaq 91
private variables 92
runtime library 90
shared variables 92, 95
stack parent token 95
THREADPRIVATE common
blocks 94
THREADPRIVATE variables 94
threads 91
worker threads 90
OpenMP THREADPRIVATE
Common Block Variable
figure 95

operating systems 329
optimizations, compiling for 30
options
for visualize 265
—grab 274
—ignore_control _c 272
in Data Window 258
—Mtotalview 274
-nlb 233
—no_stop_all 71
—patch_area 221
—patch_area_length 221
—sb 233
surface data display 263
tvdsvr
—callback 311
—serial 311
—server 311
—set_pw 312
—user_threads 309
org assembler pseudo op 246
ORNL PVM, see PVM
outliers 179, 180
outlined routine 90, 91, 94, 95
outlining, defined 90
output files, setting 48
Output to File command 48
override_redirect attribute 287
override-redirect windows 287
overrideRedirect X resource 287
ownTitles X resource 287

P

p4 listener process 72

—p4pg files 73

—p4pg option 73

page down key 21

page up key 21

pane partition 285

panes
action points list, see action

points list pane

height 285
location and size 285
partition 285
saving contents of 27
sizing 19

Version 4.1

source code, see source code
pane
stack frame, see stack frame
pane
stack trace, see stack trace
pane
thread list, see thread list pane
width 291
parallel debugging tips 110
PARALLEL DO outlined routine 91
Parallel Environment for AIX, see
PE
—parallel option 307
parallel program, restarting 112
parallel region 90, 91
Parallel Tasks dialog box figure 78
parallel tasks, starting 78
Parallel Virtual Machine, see PYM
passing arguments 31
passing environment variables to
processes 46
password checking 314
passwords 314, 315
generated by tvdsvr 312
paste key 25
pasting between windows 24
patch space
static 221
patch space size, different than
IMB 221
patch space, allocating 220
—patch_area_base option 221,
307
—patch_area_length option 221,
307
patchAreaAddress X resource 287
patchAreaLength X resource 287
patching
function calls 216
programs 215
PATH environment variable 32,
35, 44
for tvdsvr 311
pathnames, setting in procgroup
file 73
PCicon 140
PC, see program counter

Version 4.1

Index

pdenorm filter 173
PE 82
adaptor_use option 76
and slow processes 113
applications 76
cpu_use option 76
from command line 77
from poe 77
options to use 77
pending receive operations 86
pending send operations 88
configuring for 88
performance of interpreted, and
compiled expressions
217
performance of remote debugging
55
—persist option to Visualizer 250,
265
pghpf command 109
.pghpfrc file 108
PGI HPF applications, see HPF
applications
Spid intrinsic 236
pid.tid to identify thread 16
pinf filter 173
Pipe data to UNIX shell command
27
pipe for Visualizer 248
placing windows 288
poe 110
and mpirun 71
and TotalView 78
arguments 77
attaching to 79, 80
command 107
on IBM SP 73
placing on process list 80
required options to 77
running PE 77
TotalView acquires poe pro-
cesses 79
point of execution for
multiprocess or
multithreaded program
18
pointer data 23

P

pointers 23
in Fortran 165
to arrays 151
value of 165
—pop_at_breakpoint option 307
—pop_on_error option 307
popAtBreakpoint X resource 287
popOnError X resource 287
Pop-up Menu and Submenu figure
14
pop-up menu, displaying 13
port 4142 314
port number 313
for tvdsvr 31, 51, 53, 312
replacement 316
searching 313
—port option 58, 313
ports on host 312
positioning the cursor with an
editor 121
PowerPC
architecture 343
floating-point format 348
floating-point registers 345
FPSCR register 346
using the 347
FPSCR register, using 347
general registers 343
MSR register 344
—pr option 308
predefined data types 153
preprocessors 304
primary thread
definition 130
stepping 132
stepping failure 132
primary windows 15
private data for threads 6
private execution context 5
private execution stack 6
private variables 90
in OpenMP 92
procedures
displaying
declared and allocated
arrays 157

TotalView User's Guide

399

Index
 H

process as dimension in Visualizer
252
process barrier breakpoint 5, 123,
206
changes when clearing 210
changes when setting 210
changing to ordinary break-
point 210
defined 5, 196, 206
deleting 208
setting 207
states 206
Process Barrier Breakpoint in
Process and Root
Windows figure 209
process DUID 236
process groups
displaying 125
diving into 125
moving procedure 127
window 3
Process Groups Window figure
126
process ID 236
process stack 20
process state 18
Process State Info menu 184
process states, attached 40
process status
process ID 37
process location indicator 37
process name 37
state 37
process window 3, 15
control buttons 19
creating new window for 85
location 285
program counter 18
raising 43
stack of processes 20
updating 33
Process Window figure 17
Process Window Navigation
Control figure 18
Process Window Navigation
Controls figure 19

TotalView User’s Guide

processBarrierStopAll
RelatedProcessesWhen
BreakpointHit X
resource 288
processBarrierStopAll X resource
288
Sprocessduid intrinsic 236
processes
see also automatic process ac-
quisition
see also groups
acquiring 71, 73, 100
acquiring in PVM applications
97
acquisition in poe 79
apparently hung 111
attaching to 33, 34, 52, 79, 101
barrier point 123
barrier point behavior 210
breakpoints shared 203
cleanup 103
controlling 6
copy breakpoints from master
process 71
creating 46, 128, 129
creating by single-stepping 129
creating new 32
creating without starting 129
definition 6
deleting 142
deleting related 142
detaching from 36
dimmed, in the root window
138
displaying data 23
diving into 20, 34, 79
error creating 270
finding active 127
groups 124
changing 126
examining 125
held 128, 129
held defined 206
holding 5, 123, 206, 238
in parallel job 71
killing duplicates 33
list of 15

loading new executables 32, 51
local 34
location of 37
master restart 112
MPI 85
names 125
passing environment variables
to 46
refreshing process info 123
released 207
releasing 123, 206, 208
reloading 33
remote 34
restarting 142
selecting 20
single-stepping 5, 130, 131
slave, breakpoints in 72
starting 15, 128
state 37
states 40
status of 37
stop all related 203
stopped 207
stopped at barrier point 210
stopping 122, 213
stopping all related 43, 292
stopping and deleting 214
stopping intrinsic 238
stopping spawned 71
stopping when loading new
shared library 276
synchronizing 5, 136
types of process groups 124
Processes that TotalView doesn’t
own window 34, 72, 80
figure 72
processor number 37
procgroup file 73
using same absolute path
names 73
program
correcting 216
hung 33
looping 33
program counter 18
setting 140
program counter (PC) 34

Version 4.1

arrow 18
changing 7
indicator 18
procedure for setting 141
setting 140
setting program counter 140
setting to a stopped thread
140
program group
naming 125
program groups
changing 126
discussion 124
programs
compiling 29
compiling using —g 11
deleting 142
not compiled with —g 12
patching 215
restarting 142
setuid, debugging 272
prototypes for temp files 57
prun command 81
pthread_mutexattr_settype()
function 185
pthread_mutexattr_settype_np()
185
Sptree assembler pseudo op 245
pullRightMenus X resource 288
PVM 313
acquiring processes 97
attaching procedure 101
attaching to tasks 101
automatic process acquisition
100
cleanup of tvdsvr 103
creating symbolic link to tvdsvr
97
debugging 96
debugging dynamic libraries
102
disabling support for 98
dynamic libraries 102
enabling support 281, 288
enabling support for 98
message tags 102
multiple instances not allowed

Version 4.1

Index

by single user 96
running with DPVM 97
same architecture 101
search path 98
starting actions 100
tasker 100
tasker event 100
tasks 96, 97
TotalView as tasker 96
TotalView limitations 96
tvdsvr 100
pvm command 97, 99
PVM groups, unrelated to process
groups 97
—pvm option 98, 99, 308, 313
PVM Tasks and Configuration
Window figure 102
pvm_joingroup() 103
pvm_spawn() 97, 100
pvmDebugging X resource 288
pvmgs process 97, 103
terminated 103
pxdb command 338
pxdb64 command 338

Q
QSW RMS?2 applications 81
attaching to 82
debugging 81
starting 81
quad assembler pseudo op 246
Quadrics 81
quartiles array statistic 179
queueing mouse clicks 278
Quit Debugger command 28
quitting TotalView 15, 28

R

—r option 308

R state 40, 41

raising process window 43

raising the root window command
15

rank for Visualizer 250

Read-Write Lock Data Window
figure 193

Read-Write Lock Info Window

Q

command 191
Read-Write Lock Info Window
figure 191
read-write locks 191
lock state 191
memory address of 192
owner system TID 192
process shared value 192
sequence number 191
recompiling 33
recursive functions 137
single-stepping 136
redirecting
stdin 48
stdout 48
Reexecute Last Save Window
command 27
reexecute last search command
26
refresh window command 15
registers
Alpha FPCR 357
editing 122
floating-point
Alpha 357
Intel-x86 365
MIPS 361
PowerPC 345
SPARC 353
general
Alpha 356
Intel-x86 364
MIPS 358
PowerPC 343
SPARC 352
Intel-x86 FPCR 365
using the 366
Intel-x86 FPSR 367
interpreting 122
MIPS FCSR 361
using the 362
MIPS SR 360
Power FPSCR 346
Power MSR 344
PowerPC FPSCR 346
using 347
PowerPC FPSCR,

TotalView User's Guide

401

Index
B F

using 347
PowerPC MSR 344
SPARC FPSR 354
SPARC FPSR, using 355
SPARC PSR 353
relatives
attaching to 35
definition 129
Release Group command 124,
207
release process 124
release state 124
Reload Executable File command
33
reloading breakpoints 78
reloading executables 33
remapping keys 341
remote connection 53
remote debugging 55
see also PVYM applications
attaching to a process 53
connecting remote machine 53
connecting to a process 54
definition 9
launching tvdsvr 55
loading a new executable 51
process location 37
tvdsvr command syntax 311
remote hosts 31
remote login 77
—remote option 31, 54, 308
removing breakpoints 13
remsh command 315
remsh command, used in server
launches 59
repaint window command 15
Repl (replicated) indicator 105
replacement characters 315
replacing contents of variable
window 148
rereading symbol tables 33
reserved message tags 102
Reset View command 264
resetting surface view 264
resetting the program counter 140
resizing panes 19

TotalView User’s Guide

Resolving Ambiguous Function
Names Dialog Box figure
117
resolving ambiguous names 116
Resolving Ambiguous Source Line
Dialog Box figure 133
resolving multiple classes 116
resolving multiple static functions
116
resources, for Xdefaults file 275
Restart Program command 142
restarting parallel programs 112
restarting programs 142
resuming
execution 128
processes with a signal 139
resuming executing thread 140
retracing addresses 277
Return (out of function) command
137
Return (out of function) Group
command 137
return key 25
returning to original contents 115
reversed indexing 168
right angle brackets nested dive
indicator 148
right arrow is program counter 34
right mouse button 8, 13
RMS2 applications 81
attaching to 82
starting 81
root window 3, 15
content of 37
dimmed information 138
diving on a process 20
diving on a thread 20
location 288
navigation 20
raising 15
raising command 15
selecting a process 20
selecting a thread 20
state indicator 37
Root window figure 16

Root Window Showing Process
and Thread Status figure
39
rootWindLocation X resource 288
rotating surface 264
rounding modes 122
routines, selecting 18
RPM runtime library 106, 109
rsh command 63, 77
with tvdsvr 289
Run (to selection) command 130,
135
Run (to selection) Group
command 111, 132, 136
Run (to selection) Thread
command 136, 137
running state 41
—running_color option 308
runningFontForegroundColor X
resource 288
runtime libraries
RPM 106, 109
SMP 106, 109

S
S state 40
Sample Expression Window figure
234
Sample OpenMP Debugging
Session figure 92
Sample TotalView Sessions figure
4
Sample Visualizer Data Windows
figure 257
Sample Visualizer Directory
Window figure 255
Save All Action Points command
233
Save Window to File command 27
saving
action points 232, 277, 308
breakpoints 277
window contents 27
—sb option 233, 308
scaling a surface 265
scaling data window 260
Scroll bar figure 21

Version 4.1

scrolling 13, 20

by a line 21

by page 21

multiline fields 22

speed 21, 289

undoing 120

windows 20
scrollLineSpeed X resource 289
scrollPageSpeed X resource 289
Search Backward for String

command 26

Search for String command 26
search order, HPF 107
search paths

in .Xdefaults file 289

setting 44, 45, 98
—search_port option 58, 313
searchCaseSensitive X resource

289

searching 26

backwards 26

for active processes 127

for functions 8

for source code 117

for string 26

locating closest match 26

reexecuting last command 26

source code 115
searchPath X resource 289
Select button 13
select command 13
selected line, running to 136
selecting

different stack frame 18

Eval button 234

routines 18

source code, by line 141

source line 133
sending signals to program 44
serial line connection 314
—serial option 308, 311, 314
server launch 55

command 56

enabling 56

replacement characters 59
server launch command 289, 315

Version 4.1

Index

Server Launch Window command
55,58
—server option 58, 311, 314
serverLaunchEnabled X resource
289
serverLaunchString X resource
289
serverLaunchTimeout X resource
290
servers, number of 316
Set Command Arguments
command 46
Set Command Arguments dialog
box figure 46
Set Continuation Signal
command 36, 140
Set Environment Variables
command 47
Set Handling Mode Command
dialog box figure 43
Set PC to Absolute Value
command 141
Set PC to Selection command 141
Set Process Program Group
command 127
Set Search Directory command
32,35, 44,98, 273, 289
Set Search Directory dialog box
figure 45
Set Signal Handling Mode
command 43, 98, 99
—set_pw option 60, 312, 314
—set_pws option 315
setting
barrier breakpoint 207
breakpoints 14, 78, 197, 203
breakpoints while running 197
command arguments 46
command line arguments 46
environment variables 46, 47
evaluation points 14, 214
event points 14
HPF defaults 108
input and output files 48
program counter (PC) 140
search path 44
search paths 44, 98, 289

S

setting editor launch string 121
thread specific breakpoints
236
setting program counter (PC) 141
setting up, debug session 29, 51,
69
setuid programs 272
shade option 263
shape arrays, deferred types 164
share group 126, 131, 138, 207
determining 127
determining members of 127
discussion 124
naming 125
shareActionPoint X resource 290
shareActionPointInAllRelated
Processes X Resource
290
shared address space 5
shared libraries 303, 337
HP-UX 338
shared memory library code, see
SHMEM library code
debugging
shared variables 90
in OpenMP 93
OpenMP 92, 95
procedure for displaying 93
sharing action points 205
sharing breakpoints 5
shift-dive 18
opening a new window 20
shift-return command 15
shift-return keypath 25
—shm option 309
SHMEM library code debugging
103
SHMEM Sample Session figure
104
shortcut keys 14
Show All Process Groups
command 125, 127
Show All PVM Tasks command
101
Show All Unattached Processes
command 33, 34, 72

TotalView User's Guide 403

404

Index

§

Show Array Statistics command
178
Show Event Log Window
command 48
showing areas of memory 146
SIGALRM 113
SIGINT signal 89
signal handling mode 43
signal list 44
signal that caused core dump 37
—signal_handling_mode option
309
signalHandlingMode X resource
290
signals
affected by hardware registers
42
continuing execution with 139
defining how handled 7
discarding 44
handler routine 41
handling 41
handling behavior 42
handling in PVM applications
98, 99
handling in TotalView 41, 290,
309
handling mode 43
resending 44
SIGALRM 113
SIGTERM 98, 99
stopping 44
SIGSTOP when detaching 36
SIGTERM signal 98, 99
stops process 98
terminates threads on SGI 91
Single Process Group Window
figure 126
single process server launch 55
single-stepping 7, 130, 133
commands 133
continuation signals 140
group-level 131
groups 5
in a nested stack frame 136
into function calls 134
machine instructions 134, 135

TotalView User’s Guide

multiprocess programs 131
not allowed for a parallel re-
gion 91
on primary thread only 130
operating system dependen-
cies 132, 136, 140
over function calls 135
process-level 131
recursive functions 136
return out of function 137
run to a selected line 135
slow performance 273
source line 130, 134, 135
step group 131
threads 132
to a selected line 135
Sizing Cursor figure 19
sizing panes 19
skipping elements 169
sleeping state 40
Slice Displaying the Four Corners
of an Array figure 169
slices
defining 167
descriptions 170
displaying one element 170
examples 167, 169
in sorts 177
lower bound 167
multidimensional 168
of arrays 167
operations using 165
reversing indexing 168
stride elements 167
upper bound 167
with the variable command 170
SMP machines 70
SMP runtime library 106, 109
Sort Ascending command 177
Sort Descending command 177
Sort Items on the Process Pop Up
Menu figure 177
Sort Window figure 177
sorting
array data 176
array elements 171
source being interleaved 202

source code
display 15
examining 118
finding 115, 117
navigating 120
source code pane 18, 273, 285,
291
Source Display Mode command
118
source lines
ambiguous 133
marking 211
searching 133
selecting 133
source lines, editing 121
source statements as comments
202
source-level breakpoints 197
sourcePaneTabWidth X resource
291
space allocation
dynamic 220
static 220, 221
space allocation, dynamic 220
SPARC
architecture 352
floating-point format 351, 355
floating-point registers 353
FPSR register 354
using 355
general registers 352
PSR register 353
spawned processes, stopping 71
specifying search directories 45
spell checker 26
spellCorrection X resource 291
spelling corrector 291
Spelling Corrector Dialog Box
figure 26
stack
master thread 93
trace, examining 143
unwinding 141
stack context of the OpenMP
master thread 93
stack frame
current 120

Version 4.1

display 15
examining 143
matching 181
pane 18
selecting different 18
stack panes 18
stack parent token 95
diving 95
stack trace display 15
stack trace pane 18
displaying source 23
standard deviation array statistic
179
standard input, and launching
tvdsvr 64
start(), stopping within 101
start_pes() 103
starting
CLI 12
groups 129
parallel tasks 78
processes 15, 128
threads 128
TotalView 12, 30, 36, 77
TotalView for HPF 106
tvdsvr 31, 55, 58, 100
start-up, acquiring processes 69
state
and status 37
of processes and threads 37
static constructor code 129
static functions, resolving

multiple 116

static patch space allocation 220,
221

static patch space assembler
code 221

statically linked, stopping in
start() 101

statistics for arrays 178

status
and state 37
of processes 37
of threads 37
status registers
examining 122
interpreting 122

Version 4.1

Index

stdin, redirect to file 48
stdout, redirect to file 48
Step (instruction) command 130,
134
Step (instruction) Group
command 134
Step (instruction) Thread
command 134
Step (source line) command 130,
134
Step (source line) Group
command 129, 130, 134
Step (source line) Thread
command 134
Step Group command 111
step group membership changes
131
stepping
see also single-stepping
apparently hung 111
primary thread 132
primary thread can fail 132
Run (to selection) Group com~
mand 111
Sstop assembler pseudo op 245
STOP icon 13, 198, 202
color 292
for breakpoints 14, 198
Sstop intrinsic 238
Stop related processes on error
checkbox 44
STOP/BARR/EVAL/ELOG menu
200, 210, 212
—stop_all option 309
—stop_color option 309
Sstopall intrinsic 238
stopAll X resource 292
stopAllRelatedProcesses
WhenBreakpointHit X
resource 292
stopForegroundColor X resource
292
Stopped Execution of Compiled
Expressions figure 218
stopped process 210
stopped state 41
unattached process 40

S

—stopped_color option 309
stoppedFontForegroundColor X
resource 292

stopping
all related processes 43
processes 122, 214
when loading new shared
library 276
spawned processes 71
threads 122
Stopping Spawned Processes
dialog box figure 72
Sstopprocess assembler pseudo
op 245
Sstopprocess intrinsic 238
Sstopthread intrinsic 238
stride
default value of 168
elements 167
in array slices 167
omitting 168
string assembler pseudo op 246
<string> data type 155
string search 26
string syntax 280
strings, searching for by case 289
structs
see also structures
defined using typedefs 153
how displayed 152
structures 152
see also structs
editing types 150
laminating 181
subroutines, displaying 23
suffixes
of processes in process groups
125
of source files 12
sum array statistic 180
SunOS 5
/proc file system 330
key remapping 341
linking to dbfork library 327
swap space 335
Suppress All Action Points
command 212

TotalView User's Guide

405

Index
-

suppressing action points 212
Surface
in directory window 256
surface
display 263
resetting view 264
rotating 264
scaling 265
translating 265
zooming 265
Surface Data Window 261
display 262
manipulations 264
surface data, manipulating 264
Surface visualization window 256
surface window, creating 256
surface*auto_reduce.set X
resource 297
surface*contour.set X resource
297
surface*mesh.set X resource 297
surface*shade.set X resource 297
surface*xrt3dViewNormalized X
resource 297
surface*xrt3dXMeshFilter X
resource 298
surface*xrt3dYMeshFilter X
resource 298
surface*xrt3dZoneMethod X
resource 297
surface*zone.set X resource 297
surface.height X resource 297
surface.width X resource 297
suspended windows 234
swap command 335
swap space 272, 331, 336
AIX 333
Compaq Tru64 332
HP-UX 333
IRIX 335
Linux 336
SunOS 335
swapon command 336
switch-based communications 76
symbol table 5
rereading 33

TotalView User’s Guide

symbol table debugging
information 11
symbolic addresses, displaying
assembler as 118
synchronizing processes 5, 136
synchronizing using mutexes 191
synchronous run model 132
systid 16
Ssystid intrinsic 236

T
T state 40, 41
tab character 291
tab key 26
tag field 197, 201
tag field area 13, 18
target machine, defined 10
tasker event 100
tasks
attaching to 101
diving into 101
PVM 96
starting 78
—tc option 309
temp file prototypes 57
templates, ambiguous lines 198
testing when a value changes 223
text
color 294
copy and paste in field editor
24
editing 24
locating closest match 26
saving window contents 27
string search 26
text assembler pseudo op 246
—text_color option 309
third party debugger and
TotalView Visualizer 266
third party visualizer 248
and TotalView data set format
266
thread as dimension in Visualizer
252
thread ID 16
system 236
TotalView 236

thread list pane 17
thread local storage 94
variables stored in different lo-
cations 94
thread objects
displaying 183
THREADPRIVATE common block
procedure for viewing variables
in 94
THREADPRIVATE variables 94
threads 5
controlling 6
definition 6
differing operating system def-
inition 6
dimmed, in the root window
138
displaying source 23
diving 18, 20
finding window for 18
ID format 16
last executed routine 38
listing 15, 16, 17
lists of 15
opening window for 18
private data 6
process ID 39
process name 39
reason for stopping 39
resuming executing 140
selecting 20
setting breakpoints in 236
single-stepping 130, 132
stack trace 18
starting 128
state 38, 39
states 40
status of 37, 38
stopping 122
system thread ID 38
systid 16
thread status bar 39
tid 16
TotalView thread ID 38, 39
TotalView’'s model 6
user-level 293

Version 4.1

thread-specific breakpoints 203,
236
Three Dimensional Array Sliced to
Two Dimensions figure
251
Three Dimensional Surface
Visualizer Data Display
figure 263
tid 16, 187
Stid intrinsic 236
timeout for connection 56
timeouts
during initialization 79
TotalView setting 77
title bars 287
title color 294
—title_color option 309
tmpFilelHeaderString X resource
292
tmpFile 1 HostString X resource
292
tmpFile1TrailerString X resource
292
tmpFile2HeaderString X resource
292
tmpFile2HostString X resource
293
tmpFile2TrailerString X resource
293
Toggle Breakpoint at Location
Dialog Box figure 201
Toggle Breakpoint dialog box 200
Toggle Laminated Display
command 180
Toggle Node Display 283
Toggle Thread Laminated Display
command 94, 180
TotalView
and MPICH 71
as PVM tasker 96
core files 30
host machine definition 10
HPF default settings 108
interactions with Visualizer 247
quitting 28
starting 12, 30, 36, 77
starting on remote hosts 31

Version 4.1

Index

target machine definition 10
thread model 6
Visualizer configuration 249
visualizing array data 9
TotalView Assembler Language
243
TotalView assembler operators
hil6 244
hi32 244
lo16 245
1032 245
TotalView assembler pseudo ops
$debug 245
Shold 245
Sholdprocess 245
Sholdprocessstopall 245
Sholdstopall 245
Sholdthread 245
Sholdthreadstop 245
Sholdthreadstopall 245
Sholdthreadstopprocess 245
Slong_branch 245
Sptree 245
Sstop 245
Sstopall 245
Sstopprocess 245
Sstopthread 245
align 245
ascii 245
asciz 245
bss 246
byte 246
comm 246
data 246
def 246
double 246
equiv 246
fill 246
float 246
global 246
half 246
lcomm 246
lysm 246
org 246
quad 246
string 246
text 246

T

word 246
zero 246
totalview command 12, 30, 36, 74,
78, 80, 299
—a option 46
command-line options 275
description 299
environment variables 47
options 300
synopsis 299
TotalView data types
<address> 153
<char> 153
<character> 154
<code> 154, 156
<complex*16> 154
<complex*8> 154
<complex> 154
<double precision> 154
<double> 154
<extended> 154
<float> 154
<int> 154
<integer*1> 154
<integer*2> 155
<integer*4> 155
<integer*8> 155
<integer> 155
<logical*1> 155
<logical*2> 155
<logical*4> 155
<logical*8> 155
<logical> 155
<long long> 155
<long> 155
<real* 16> 155
<real* 4> 155
<real* 8> 155
<real> 155
<short> 155
<string> 155
<void> 155, 156
TotalView Debugger Server, figure
10
TotalView Debugger Server, see
tvdsvr

TotalView User's Guide

407

Index
-

TOTALVIEW environment variable
71
TotalView program
quitting 28
visualizing array data 9
TotalView Visualizer 254-266
TotalView Visualizer Connection
figure 248
TotalView Visualizer Relationships
figure 249
TotalView Visualizer
see Visualizer
TotalView windows 15
action point List pane 18
editing cursor 24
process 15
program counter arrow 18
scroll speed 21
scrolling 22
selecting objects 13
sizing 19
text string search 26
totalview*arrowBackgroundColor
X resource 276
totalview*arrowForegroundColor
X resource 276
totalview*askOnDlopen X
resource 276
totalview*autoLoadBreakpoints X
resource 277
totalview*autoRetraceAddresses
X resource 277
totalview*autoSaveBreakpoints X
resource 277
totalview* backgroundColor X
resource 277
totalview*barrierFontForeground
Color X resource 277
totalview*barrierForegroundColor
X resource 277
totalview*barrierStopAll X
resource 278
totalview*blindMouse X resource
278
totalview*breakFontForeground
Color X resource 278

TotalView User’s Guide

totalview* breakpointWind
Location X resource 278
totalview*bulkLaunchBase
Timeout X resource 278
totalview*bulkLaunchEnabled X
resource 278
totalview*bulkLaunchIncr
Timeout X resource 278
totalview*bulkLaunchString X
resource 278
totalview* buttonBackground
Color X resource 278
totalview*buttonForeground
Color X resource 279
totalview* chaseMouse X resource
279
totalview* compileExpressions X
resource 279
totalview* compilerVars X
resource 279
totalview* conditionVariableInfo
WindLocation X
resource 279
totalview* cTypeStrings X
resource 280
totalview*dataWindLocation X
resource 280
totalview* displayAssembler
Symbolically X resource
280
totalview*dllignorePrefix X
resource 280
totalview* dlIStopSuffix X
resource 280
totalview* DPVMDebugging X
resource 281
totalview*editorLaunchString X
resource 281
totalview*errorFontForeground
Color X resource 281
totalview* evalForegroundColor X
resource 281
totalview*evalWindLocation X
resource 281
totalview*eventLogWindLocation
X resource 281
totalview*font X resource 282

totalview*foregroundColor X
resource 282
totalview*frameOffsetX X
resource 282
totalview*frameOffsetY X
resource 282
totalview*globalsWindLocation X
resource 282
totalview*globalTypenames X
resource 282
totalview* grabMouse X resource
283
totalview*helpWindLocation X
resource 283
TotalView*hpf X resource 109
totalview*hpf X resource 283
totalview*hpfNode X resource
283
totalview*inverseVideo X
resource 284
totalview*kccClasses X resource
284
totalview*mainHSplit X resource
284
totalview*mainHSplit1 X resource
285
totalview*mainHSplit2 X resource
285
totalview*mainVSplit X resource
285
totalview*mainVSplit1 X resource
285
totalview*mainVSplit2 X resource
285
totalview*mainWindLocation X
resource 285
totalview*menuArrowForeground
Color X resource 286
totalview*menuCache X resource
286
totalview*messageStateWind
Location X resource 286
totalview*modulesWindLocation
X resource 286
totalview*mouseCursor
BackgroundColor X
resource 286

Version 4.1

totalview*mouseCursor
ForegroundColor X
resource 286
totalview*multForegroundColor X
resource 286
totalview* mutexWindLocation X
resource 287
totalview* overrideRedirect X
resource 287
totalview* ownTitles X resource
287
totalview* patchAreaAddress X
resource 287
totalview* patchArealength X
resource 287
totalview* popAtBreakpoint X
resource 287
totalview* popOnkError X resource
287
totalview* processBarrierStopAll
RelatedProcessesWhen
BreakpointHit X
resource 288
totalview* processBarrierStopAll X
resource 288
totalview* pullRightMenus X
resource 288
totalview* pvmDebugging X
resource 288
totalview*rootWindLocation X
resource 288
totalview*runningFont
ForegroundColor X
resource 288
totalview*scrollLineSpeed X
resource 289
totalview*scrollPageSpeed X
resource 289
totalview*searchCaseSensitive X
resource 289
totalview*searchPath X resource
289
totalview*serverLaunchEnabled X
resource 289
totalview*serverLaunchString X
resource 289

Version 4.1

Index

totalview*serverLaunchTimeout X
resource 290
totalview*shareActionPoint X
resource 290
totalview*shareActionPointIn
AllRelatedProcesses X
resource 290
totalview*signalHandlingMode X
resource 290
totalview*sourcePaneTabWidth X
resource 291
totalview*spellCorrection X
resource 291
totalview*stopAll X resource 292
totalview*stopAllRelated
ProcessesWhen
BreakpointHit X
resource 292
totalview*stopForegroundColor X
resource 292
totalview* stoppedFont
ForegroundColor X
resource 292
totalview*tmpFile IHeaderString
X resource 292
totalview*tmpFile IHostString X
resource 292
totalview*tmpFile I TrailerString X
resource 292
totalview*tmpFile2HeaderString
X resource 292
totalview*tmpFile2HostString X
resource 293
totalview* tmpFile2TrailerString X
resource 293
totalview*useColor X resource
293
totalview*uselnterface X resource
293
totalview*userThreads X resource
293
totalview*useTextColor X
resource 294
totalview*useTitleColor X
resource 294
totalview*useTransientFor X
resource 294

T

totalview*verbosity X resource
294
totalview*visualizerLaunch
Enabled X resource 295
totalview*visualizerLaunchString
X resource 294
totalview*visualizerMaxRank X
resource 295
totalview*warnStepThrow X
resource 295
totalviewcli command 12, 31
transient-for windows 294
translating a surface 265
translating data window 261
troubleshooting xvi, 269
checkout failed 271
error creating new process 270
error launching process 270
error while deleting target 270
HPF source code does not ap-
pear 274
MPI 88
out of memory 272
single-stepping is slow 273
source code doesn’t appear
273
tvdsvr fails to appear 274
X resources are not recognized
274
—tv option 71
TVD.breakpoints file 233
TVDB_patch_base_address
object 221
tvdb_patch_space.s 222
tvdsvr 31, 55, 56, 58, 217, 312,
315
and environment variables 47
attaching to 101
autolaunch 289
cleanup by PVM 103
editing command line for poe
79
fail in MPI environment 89
fails to appear 274
launching 59
launching, arguments 64
PATH environment variable

TotalView User's Guide

409

410

Index

-

311
starting manually 58
symbolic link from PVM direc-
tory 97
—verbosity option 289
with PVM 100
tvdsvr command 311
description 311
enabling launch of 289
environment variables 47
options 312
password 312
starting 55, 289
synopsis 311
timeout while launching 56, 58,
290
use with DPVM applications
313
use with PVM applications 97,
313
tvdsvr.conf 314
TVDSVRLAUNCHCMD
environment variable
59, 315
Two Dimensional Surface
Visualizer Data Display
figure 262
two-dimensional graphs 259
type casting 149
examples 156
type names 282
type strings
built-in 153
editing 149
for opaque types 157
parameter in .Xdefaults file 280
supported for Fortran 150
type, user defined type 164
typedefs
defining structs 153
how displayed 152
types supported for C language
150

U
UDT 164
UDWP, see watchpoints

TotalView User’s Guide

unattached process states 39
summary 40
Unattached Process window 37
Unattached Processes window 40,
79
undive icon 115, 148
undiving
definition 148
from windows 148
unexpected messages 87
unions 152
how displayed 153
Unsort command 177
Unsuppress All Action Points
command 213
unsuppressing action points 213
unwinding the stack 141
up-arrow key 21, 22
Update Process Info command
123,138
Update PVM Task List command
101
updating visualization displays
252
upper adjacent array statistic 180
upper bounds 151
of array slices 167
useColor X resource 293
USEd information 162
uselnterface X resource 293
user defined data type 161, 164
—user_threads option 309
userThreads X resource 293
useTextColor X resource 294
useTitleColor X resource 294
useTransientFor X resource 294
using expressions 7
using menus 14
using the keyboard 14

Vv
value field 234
values, changing 24
Variable command 93, 94, 144,
145, 170
specifying slices 170
Variable Menu figure 225

variable window 3, 8
closing 147
condition 188
displaying 143
duplicating 149
in recursion, manually refocus
144
laminated display 180
location 280
replacing contents 148
Stale in pane header 144
tracking addresses 144
updates to 144
Variable Window figure 252
Variable Window for Area of
Memory figure 146
Variable Window for array? figure
171
Variable Window with Machine
Instructions figure 147
variables
at different addresses 181
changing the value 149
changing values of 8, 149
displaying all globals 145
displaying contents 23
in modules 162
intrinsic, see intrinsic variables
laminated display 180
laminating 8
stored in different locations 94
verbosity level 81
—verbosity option 60, 61, 310, 315
tvdsvr 289
verbosity setting replacement
character 317
verbosity X resource 294
vh_axis_order header field 267
vh_dims dataset
field 267
vh_dims header field 267
vh_effective_rank dataset
field 267
vh_effective_rank header field
267
vh_id dataset field 267
vh_id header field 267

Version 4.1

vh_item_count dataset
field 267
vh_item_count header field 267
vh_item_length dataset
field 267
vh_item_length header field 267
vh_magic dataset
field 267
vh_magic header field 267
vh_title dataset
field 267
vh_title header field 267
vh_type dataset
field 267
vh_type header field 267
vh_version dataset
field 267
vh_version header field 267
vis_ao_column_major constant
267
vis_ao_row_major constant 267
vis_float constant 267
VIS_MAGIC constant 267
VIS MAXDIMS constant 267
VIS MAXSTRING constant 267
vis_signed_int constant 267
vis_unsigned_int constant 267
VIS_VERSION constant 267
visualization
deleting a dataset 256
display data 247
extract data 247
translating a surface 265
zooming a surface 265
Svisualize 9, 239, 253-254
visualize command 9, 106, 252,
265
Visualize Distribution command
106
Svisualize EVAL 105
Visualize* data*pick_message.
background X resource
296
Visualize*directory*
auto_visualize. set X
resource 296

Version 4.1

Index

Visualize*directory.width X
resource 296
Visualize*graph *lines.set X
resource 296
Visualize*graph *points.set X
resource 296
Visualize*graph.width X resource
296
Visualize*surface*auto_reduce.
set X resource 297
Visualize*surface*contour.set X
resource 297
Visualize*surface*mesh.set X
resource 297
Visualize*surface*shade.set X
resource 297
Visualize*surface*xrt3dView
Normalized X resource
297
Visualize*surface*xrt3dXMesh
Filter X resource 298
Visualize*surface*xrt3dYMesh
Filter X resource 298
Visualize*surface*xrt3dZone
Method X resource 297
Visualize*surface*zone.set X
resource 297
Visualize*surface.height X
resource 297
Visualize*surface. width X
resource 297
visualize.h file 266
Visualizer 9, 183
auto launch options, changing
249
choosing method for display-
ing data 258
configuring 249
configuring launch 249
creating graph window 256
creating surface window 256
data for recursive routines 251
data sets to visualize 251
data types 251
data window 254, 256
data window manipulation
commands 260

\Y

dataset defined 251
dataset numeric identifier 251
dataset parameters 264
deleting datasets 256
dimensions 252
directory window 254, 255
disabling 249
display not automatically up-
dated 252
exiting from 256
—file option 250, 265
graphs
display 259, 260
manipulating 260
how implemented 247
interactions with TotalView 247
laminated data panes 252
launch
command, change shell 250
from command line 265
launch options 249
method 258
method automatically chosen
259
new or existing dataset 251
number of arrays 251
—persist option 250, 265
pipe 248
rank 250
relationship to TotalView 248
resetting surface view 264
rotating 264
scaling a surface 265
selecting datasets 256
shell launch command 250
slices 251
surface data
display options 263
manipulating display 264
Surface Data Window 261
third party 248
adapting to 266
considerations 266
using casts 253
windows, types of 254
Visualizer Graph Data Window
figure 260

TotalView User's Guide

411

412

Index

P

Visualizer Launch Window figure
250
Visualizer Windows figure 255
visualizerLaunchEnabled X
resource 295
visualizerLaunchString X resource
294
visualizerMaxRank X resource 295
visualizing
data 247
data sets
from a file 265
from variable window 252
in expressions using Svisualize
253
visualizing data 256
<void> data type 156

W

waiters 190
warnStepThrow X resource 295
watching memory 228
Watchpoint on Variable... (w)
command 225
Watchpoint Options dialog box
228,230
Watchpoint Options Dialog Box
figure 226
watchpoints 223
Snewval 227, 231
Soldval 227, 231
alignment 232
byte size 226
conditional 223, 227, 230
copying data 230
creating 225
defined 7, 196
disabling 227, 228
displaying 228
diving into 228
enabling 227, 228
evaluated, not compiled 232
evaluating an expression 223
example of triggering when val-
ue goes negative 231
length compared to Soldval or

TotalView User’s Guide

Snewval 232
lists of 18
lowest address triggered 229
memory address watched 225
modifying a memory location
223
monitoring adjacent locations
230
multiple 229
not saved 233
PC position 229
problem with stack variables
228
sharing 227
size of 226
stopping related process when
triggered 226
supported platforms 223
testing a threshold 223
testing when a value changes
223
triggering 223, 229
unconditional watch points
226
watching memory 228
window contents, saving 27
window location 275
action points window 278
event log 281
expression evaluation 281
global variables 282
help 283
message state window 286
modules 286
offset 282
Root window 288
variable window 280
windows 147
action points 278
closing 147
copying between 24
data 256
Data Window 258
Directory Window 255
evaluation 281
evaluation, see also expression

evaluation window
event log 48, 281
global variables 282
graph data 259
help 283
offset between 282
override-redirect 287
pasting between 24
problems with 274
process 285
Processes that TotalView
doesn't own 72
refreshing 15
root, placing 288
Surface Data Window 261
suspended 234
transient-for 294
variable 280
windows for variables 8
Windows, displaying New Base
Window 149
word assembler pseudo op 246
worker threads 90
—working_directory option 60, 61,
315
Write data to a file command 27

X
X resource option 300
Xdefaults 275
xrdb command 274, 275
—Xresource=value option 300
xterm
launching tvdsvr from 64
problems with 272

VA

Z state 40

zero assembler pseudo op 246
zero count array statistic 180
zombie state 40

zone maps 262

zone option 263

zooming a surface 265
zooming data window 261

Version 4.1

	About This Book
	Supported Platforms
	Reporting Problems
	Conventions

	TotalView Features
	TotalView Advantages
	TotalView Windows
	Multiprocess Programs
	Multithreaded Programs
	Controlling Processes and Threads
	Using Action Points
	Examining and Manipulating Data
	Visualizing Array Data
	Distributed Debugging
	Context-Sensitive Help

	TotalView Basics
	Compiling Programs
	Starting TotalView
	Using the Mouse Buttons
	Using Menu and Keyboard Commands
	Getting Help
	Using the Primary Windows
	Starting a Process

	Sizing Process Window Panes
	Navigating in the Process Window
	Navigating in the Root Window

	Scrolling Windows and Fields
	Scrolling Windows
	Scrolling Multiline Fields

	Diving into Objects
	Editing Text
	Searching for Text
	Using the Spelling Corrector
	Saving the Contents of Windows
	Exiting from TotalView

	Setting Up a Debugging Session
	Compiling Programs
	Starting the TotalView Debugger
	Loading Executables
	Loading a New Executable
	Reloading a Recompiled Executable

	Attaching to Processes
	Attaching Using Show All Unattached Processes
	Attaching Using the New Program Window

	Detaching from Processes
	Examining a Core File
	Determining the Status of Processes and Threads
	Process Status
	Thread Status
	Unattached Process States
	Attached Process States

	Handling Signals
	Setting Search Paths
	Setting Command Arguments
	Setting Environment Variables
	Setting Input and Output Files�
	Monitoring TotalView Sessions

	Setting Up Remote Debugging Sessions
	Loading a Remote Executable
	Attaching to a Remote Process
	Connecting to Remote Machines
	Starting the Debugger Server for Remote Debugging
	Single Process Server Launch Options
	Bulk Launch Window Options
	Starting the Debugger Server Manually
	Single Process Server Launch Command
	Bulk Server Launch on an SGI MIPs Machine
	Bulk Server Launch on an IBM RS/6000 AIX Machine
	Disabling Auto�Launch
	Changing the Remote Shell Command
	Changing the Arguments
	Auto-launch Sequence

	Debugging Over a Serial Line
	Start the TotalView Debugger Server
	Starting TotalView on a Serial Line
	New Program Window

	Setting Up Parallel Debugging Sessions
	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	MPICH P4 procgroup Files

	Debugging Compaq MPI Applications
	Starting TotalView on a Compaq MPI Job
	Attaching to a Compaq MPI Job

	Debugging HP MPI Applications
	Starting Totalview on an HP MPI Job
	Attaching to an HP MPI Job

	Debugging IBM MPI (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Job
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job
	Attaching From a Node Running poe
	Attach From a Node Not Running poe

	Debugging SGI MPI Applications
	Starting Totalview on a SGI MPI Job
	Attaching to an SGI MPI Job

	Debugging QSW RMS2 Applications
	Starting TotalView on an RMS2 Job
	Attaching to an RMS2 Job

	Displaying Message Queue State
	Message Queue Display Basics
	Message Operations
	MPI Process Diving
	MPI Buffer Diving
	Pending Receive Operations
	Unexpected Messages
	Pending Send Operations

	MPI Debugging Troubleshooting

	Debugging OpenMP Applications
	Debugging an OpenMP Program
	OpenMP Private and Shared Variables
	OpenMP THREADPRIVATE Common Blocks
	OpenMP Stack Parent Token Line

	Debugging PVM and DPVM Applications
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	PVM/DPVM Automatic Process Acquisition
	Attaching to PVM/DPVM Tasks

	Shared Memory Code
	Debugging Portland Group, Inc. HPF Applications
	Starting TotalView with HPF
	Dynamically Loaded Library

	Setting Up PGI HPF Compiler Defaults
	Setting Up MPICH
	Setting TotalView Defaults for HPF
	Compiling HPF for Debugging
	Starting HPF Programs

	Parallel Debugging Tips
	General Parallel Debugging Tips
	MPICH Debugging Tips
	IBM PE Debugging Tips

	Debugging Programs
	Finding the Source Code for Functions
	Resolving Ambiguous Names

	Finding the Source Code for Files
	Examining Source and Assembler Code
	Current Stack Frame
	Editing Source Text
	Changing the Editor Launch String

	Interpreting Status and Control Registers
	Stopping Processes and Threads
	Holding and Releasing Processes
	Examining Process Groups
	Displaying Process Groups
	Changing Program Groups
	Finding Active Processes

	Starting Processes and Threads
	Creating a Process without Starting it
	Creating a Process by Single-Stepping

	Single Stepping
	Process-level Single Stepping
	Group-level Single Stepping
	Thread-level Single Stepping
	Thread-level Control
	Selecting Source Lines

	Single-Step Commands
	Stepping Into Function Calls
	Stepping Over Function Calls

	Executing to a Selected Line
	Executing to the Completion of a Function

	Displaying Thread and Process Locations
	Continuing with a Specific Signal
	Setting the Program Counter
	Deleting Programs
	Restarting Programs

	Examining and Changing Data
	Displaying Variable Windows
	Displaying Local Variables and Registers
	Displaying a Global Variable
	Displaying All Global Variables
	Displaying Areas of Memory
	Displaying Machine Instructions
	Closing Variable Windows

	Diving in Variable Windows
	Changing the Values of Variables
	Changing the Data Type of Variables
	How TotalView Displays C Data Types
	C Cast Syntax
	Pointers to Arrays
	Arrays
	Typedefs
	Structures
	Unions
	Built-In Types
	Character arrays (<string> Data Type)
	Areas of memory (<void> Data Type)
	Instructions (<code> Data Type)

	Type Casting Examples

	Opaque Type Definitions
	Changing the Address of Variables
	Changing Types to Display Machine Instructions
	Displaying C++ Types
	Classes
	Changing Class Types in C++

	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Fortran 90 User Defined Type
	Fortran 90 Deferred Shape Array Type
	Fortran 90 Pointer Type

	Arrays
	Displaying Array Slices
	Slice Definitions
	Using Slices in the Variable Command

	Array Data Filtering
	Filtering by Comparison
	Filtering for IEEE Values
	Filtering by Range of Values
	Array Filter Expressions
	Filter Comparisons
	Filtering Array Data

	Sorting Array Data
	Array Statistics

	Displaying a Variable in All Processes or Threads
	Diving in a Laminated Pane
	Editing a Laminated Variable

	Visualizing Array Data
	Visualizing a Laminated Data Pane

	Displaying Thread Objects
	Displaying Mutex Information
	Displaying Condition Variable Information
	Displaying Read-Write Lock Information
	Displaying PThread-Specific Data Key Information

	Setting Action Points
	Action Points Overview
	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Selecting Ambiguous Source Lines
	Diving into Ambiguous Source Lines

	Toggling Breakpoints at Locations
	Ambiguous Locations

	Setting Machine-Level Breakpoints
	Thread-Specific Breakpoints
	Breakpoints for Multiple Processes
	Breakpoint when using fork()/execve()
	Example: Multiprocess Breakpoint
	Process Barrier Breakpoints
	Setting a Process Barrier Breakpoint
	Releasing Processes from Process Barrier Points
	Deleting a Process Barrier Point
	Changes when Setting and Clearing a Barrier Point

	Toggling Between a Breakpoint and a Process Barrier Point
	Displaying the Action Points Window
	Displaying and Controlling Action Points

	Defining Evaluation Points
	Setting Evaluation Points
	Setting Conditional Breakpoints
	Patching Programs
	Conditionally Patching Out Code
	Patching In a Function Call
	Correcting Code

	Interpreted Versus Compiled Expressions
	Interpreted Expressions
	Compiled expressions
	Interpreted Versus Compiled Expression Performance

	Allocating Patch Space for Compiled Expressions
	Dynamic Patch Space Allocation
	Static Patch Space Allocation

	Controlling Evaluation Points

	Using Watchpoints
	Architectures
	Creating Watchpoints
	Displaying Watchpoints using the Action Points Window

	Watching Memory
	Triggering Watchpoints
	Multiple Watchpoints
	Data Copies

	Conditional Watchpoints

	Saving Action Points in a File
	Evaluating Expressions
	Writing Code Fragments
	Intrinsic Variables
	Built-In Statements
	C Constructs Supported
	Data Types and Declarations
	Statements

	Fortran Constructs Supported
	Data Types and Declarations
	Statements

	Writing Assembler Code

	Visualizing Data
	How the Visualizer Works
	Configuring TotalView to Launch the Visualizer
	Data Types that TotalView Can Visualize
	Visualizing Data from the Variable Window
	Visualizing Data in Expressions
	Visualizer Animation

	The TotalView Visualizer
	Directory Window
	Data Windows

	Views of Data
	Graph Data Window
	Displaying Graphs
	Manipulating Graphs
	Surface Data Window�
	Displaying Surface Data
	Manipulating Surface Data

	Launching the Visualizer from Command Line�
	Adapting a Third Party Visualizer�

	Troubleshooting
	The Problems

	X Resources
	TotalView X Resources
	Visualizer X Resources

	TotalView Command Syntax
	Options

	TotalView Debugger Server Command Syntax
	Replacement Characters

	Compilers and Environments
	AIX on RS/6000 Systems
	Compaq Tru64 UNIX
	HP-UX
	IRIX on SGI MIPS Systems
	SunOS 5 on SPARC
	Using Exception Data on Compaq Tru64 UNIX
	Linking with the dbfork Library
	AIX on RS/6000 Systems
	Linking C++ Programs with dbfork
	Compaq Tru64 UNIX
	HP-UX
	SunOS 5 SPARC
	IRIX6-MIPS

	Operating Systems
	Supported Operating Systems
	Mounting the /proc File System
	Compaq Tru64 UNIX, SunOS 5, and IRIX
	Compaq Tru64 UNIX and SunOS 5
	IRIX

	Swap Space
	Compaq Tru64 UNIX
	AIX
	HP HP-UX
	Maximum data size

	SunOS 5
	IRIX
	Linux

	Shared Libraries
	Using Shared Libraries on HP-UX

	Debugging Dynamically Loaded Libraries
	Known Limitations

	Remapping Keys
	Expression System
	IBM AIX
	Compaq Tru64 UNIX
	SGI IRIX

	Architectures
	Power
	Power General Registers
	Power MSR Register
	Power Floating-Point Registers
	Power FPSCR Register
	Using the Power FPSCR Register
	Power Floating-Point Format

	HP PA-RISC
	PA-RISC General Registers
	PA-RISC Process Status Word
	PA-RISC Floating-Point Registers
	PA-RISC Floating-Point Format

	SPARC
	SPARC General Registers
	SPARC PSR Register
	SPARC Floating-Point Registers
	SPARC FPSR Register
	Using the SPARC FPSR Register
	SPARC Floating-Point Format

	Alpha
	Alpha General Registers
	Alpha Floating-Point Registers
	Alpha FPCR Register
	Alpha Floating-Point Format

	MIPS
	MIPS General Registers
	MIPS SR Register
	MIPS Floating-Point Registers
	MIPS FCSR Register
	Using the MIPS FCSR Register
	MIPS Floating-Point Format
	MIPS Delay Slot Instructions

	Intel-x86
	Intel-x86 General Registers
	Intel-x86 Floating-Point Registers
	Intel-x86 FPCR Register
	Using the Intel-x86 FPCR Register
	Intel-x86 FPSR Register
	Intel-x86 Floating-Point Format

	Glossary

